X

Toán lớp 10 Chân trời sáng tạo

Một công ty kinh doanh thương mại chuẩn bị cho một đợt khuyến mại nhằm thu hút khách hàng bằng cách tiến hành quảng cáo sản phẩm của công ty trên hệ thống phát thanh và truyền hình. Chi phí c


Câu hỏi:

Một công ty kinh doanh thương mại chuẩn bị cho một đợt khuyến mại nhằm thu hút khách hàng bằng cách tiến hành quảng cáo sản phẩm của công ty trên hệ thống phát thanh và truyền hình. Chi phí cho 30 giây quảng cáo trên sóng phát thanh là 5 000 000 đồng, trên đài truyền hình là 15 000 000 đồng. Sóng phát thanh chỉ nhận phát các chương trình quảng cáo có thời lượng ít nhất là 30 giây và nhiều dài nhất 2 phút. Đài truyền hình chỉ nhận các chương trình quảng cáo có thời lượng ít nhất là 10 giây và nhiều nhất là 30 giây. Theo các phân tích, cùng thời lượng một phút quảng cáo, trên truyền hình sẽ có hiệu quả gấp 6 lần trên sóng phát thanh. Công ty dự định chi tối đa 20 000 000 đồng cho quảng cáo. Công ty cần đặt thời lượng quảng cáo trên sóng phát thanh và truyền hình như thế nào để hiệu quả nhất?
A. 30 giây trên sóng phát thanh và 10 giây đài truyền hình;
B. 30 giây trên sóng phát thanh và 30 giây đài truyền hình;
C. 90 giây trên sóng phát thanh và 10 giây đài truyền hình;
D. 120 giây trên sóng phát thanh và 10 giây đài truyền hình.

Trả lời:

Hướng dẫn giải

Đáp án đúng là: B

Chi phí cho 30 giây quảng cáo trên sóng phát thanh là 5 000 000 đồng, trên sóng truyền hình là 15 000 000 đồng nên chi phí cho 1 phút quảng cáo trên sóng phát thanh là 10 000 000 đồng, trên sóng truyền hình là 30 000 000 đồng.

Gọi thời lượng công ty đặt quảng cáo trên sóng phát thanh là x (phút), trên truyền hình là y (phút).

Chi phí cho quảng cáo trên sóng phát thanh là: 10 000 000x (đồng).

Chi phí cho quảng cáo trên truyền hình là: 30 000 000y (đồng).

Tổng chi phí cho việc quảng cáo là: 10 000 000x + 30 000 000y (đồng).

Do công ty dự định chi tối đa 20 000 000 đồng cho quảng cáo nên ta có:

10 000 000x + 30 000 000y ≤ 20 000 000

Hay x + 3y ≤ 2 Û x + 3y – 2 ≤ 0.

Đổi 10 giây = \(\frac{1}{6}\) phút, 30 giây = \(\frac{1}{2}\) phút.

Sóng phát thanh chỉ nhận phát các chương trình quảng cáo có thời lượng ít nhất là 30 giây và nhiều dài nhất 2 phút nên ta có:

\(\frac{1}{2}\) ≤ x ≤ 2 \[ \Leftrightarrow \left\{ \begin{array}{l}x \ge \frac{1}{2}\\x \le 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x - \frac{1}{2} \ge 0\\x - 2 \le 0\end{array} \right.\]

Đài truyền hình chỉ nhận các chương trình quảng cáo có thời lượng ít nhất là 10 giây và nhiều nhất là 30 giây nên ta có:

\(\frac{1}{6}\) ≤ y ≤ \(\frac{1}{2}\) \( \Leftrightarrow \left\{ \begin{array}{l}y \ge \frac{1}{6}\\y \le \frac{1}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y - \frac{1}{6} \ge 0\\y - \frac{1}{2} \le 0\end{array} \right.\)

Hiệu quả chung của quảng cáo là: x + 6y.

Bài toán trở thành: Xác định x, y sao cho F(x; y) = x + 6y đạt giá trị lớn nhất với:

\[\left\{ \begin{array}{l}x - \frac{1}{2} \ge 0\\x - 2 \le 0\\y - \frac{1}{6} \ge 0\\y - \frac{1}{2} \le 0\\x + 3y - 2 \le 0\end{array} \right.\]

Biểu diễn miền nghiệm của hệ bất phương trình trên mặt phẳng Oxy:

• Miền nghiệm của bất phương trình x – \(\frac{1}{2}\) ≥ 0 là nửa mặt phẳng (kể cả bờ d1: x – \(\frac{1}{2}\) = 0) không chứa điểm O(0; 0).

• Miền nghiệm của bất phương trình x – 2 ≤ 0 là nửa mặt phẳng (kể cả bờ d2: x – 2 = 0) chứa điểm O(0; 0).

• Miền nghiệm của bất phương trình y – \(\frac{1}{6}\) ≥ 0 là nửa mặt phẳng (kể cả bờ d3: y – \(\frac{1}{6}\)= 0) không chứa điểm O(0; 0).

• Miền nghiệm của bất phương trình y – \(\frac{1}{2}\) ≤ 0 là nửa mặt phẳng (kể cả bờ d4: y – \(\frac{1}{2}\) = 0) chứa điểm O(0; 0).

• Miền nghiệm của bất phương trình x + 3y – 2 ≤ 0 là nửa mặt phẳng (kể cả bờ d5: x + 3y – 2 = 0) chứa điểm O(0; 0).

Miền không gạch chéo (kể cả bờ d1, d2, d3, d4 và d5) là giao của các miền nghiệm và cũng là phần biểu diễn miền nghiệm của hệ bất phương trình đã cho.

Media VietJack

Miền nghiệm của hệ bất phương trình là miền tam giác ABC với A\(\left( {\frac{1}{2};\frac{1}{6}} \right),\) B\(\left( {\frac{3}{2};\frac{1}{6}} \right)\) và C\(\left( {\frac{1}{2};\frac{1}{2}} \right).\)

Xét F(x; y) = x + 6y ta có:

Tại A\(\left( {\frac{1}{2};\frac{1}{6}} \right):\) F = \(\frac{1}{2} + 6.\frac{1}{6} = 1,5;\)

Tại B\(\left( {\frac{3}{2};\frac{1}{6}} \right):\) F = \(\frac{3}{2} + 6.\frac{1}{6} = 2,5;\)

Tại C\(\left( {\frac{1}{2};\frac{1}{2}} \right):\) F = \(\frac{1}{2} + 6.\frac{1}{2} = 3,5.\)

Khi đó F(x; y) đạt giá trị lớn nhất bằng 3,5 tại C\(\left( {\frac{1}{2};\frac{1}{2}} \right).\)

Tức là công ty đó cần đặt thời lượng trên đài phát thanh \(\frac{1}{2}\) phút = 30 giây và trên đài truyền hình \(\frac{1}{2}\) phút = 30 giây để đạt hiệu quả nhất.

Vậy ta chọn phương án B.

Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:

Câu 1:

Cho hệ bất phương trình \(\left\{ \begin{array}{l}x - y - 1 \le 0\\x + 4y + 9 \ge 0\\x - 2y + 3 \ge 0\end{array} \right..\) Biểu thức F(x; y) = 3x – 2y – 4 có giá trị nhỏ nhất bằng:

Xem lời giải »


Câu 2:

Cho hệ bất phương trình \(\left\{ \begin{array}{l}0 \le y \le 4\\x \ge 0\\x - y - 1 \le 0\\x + 2y - 10 \le 0\end{array} \right..\) Gọi điểm có toạ độ (x; y) thuộc miền nghiệm của hệ bất phương trình sao cho F(x; y) = x + 2y đạt giá trị lớn nhất. Số điểm thoả mãn là:

Xem lời giải »


Câu 3:

Cho hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\x - y - 1 \le 0\\x + 2y - 10 \le 0\end{array} \right..\) Diện tích miền nghiệm của hệ bất phương trình bằng:

Xem lời giải »


Câu 4:

Nhân dịp tết Trung Thu, xí nghiệp sản xuất bánh muốn sản xuất hai loại bánh: Đậu xanh, Bánh dẻo nhân đậu xanh. Để sản xuất hai loại bánh này, xí nghiệp cần các nguyên liệu: đường, đậu xanh, bột, trứng, mứt, … Giả sử số đường có thể chuẩn bị được là 300 kg, đậu xanh là 200 kg, các nguyên liệu khác bao nhiêu cũng có. Sản xuất một cái bánh đậu xanh cần 0,03 kg đường, 0,04 kg đậu xanh và cho lãi 5 000 đồng. Sản xuất một cái bánh dẻo cần 0,07 kg đường, 0,04 kg đậu xanh và cho lãi 4 500 đồng. Cần lập kế hoạch để sản xuất mỗi loại bánh bao nhiêu cái để không bị động về đường, đậu và tổng số lãi thu được là lớn nhất (nếu sản xuất bao nhiêu cũng bán hết)?

Xem lời giải »