a) Dùng hai số hạng đầu tiên trong khai triển của (1 + 0,05)4 để tính giá trị gần đúng của 1,054. b) Dùng máy tính cầm tay tính giá trị của 1,054 và tính sai số tuyệt đối của giá trị gần đún
Câu hỏi:
a) Dùng hai số hạng đầu tiên trong khai triển của (1 + 0,05)4 để tính giá trị gần đúng của 1,054.
b) Dùng máy tính cầm tay tính giá trị của 1,054 và tính sai số tuyệt đối của giá trị gần đúng nhận được ở câu a.
Trả lời:
Hướng dẫn giải
a) Khai triển: (1 + 0,05)4 = 14 + 4 . 13 . 0,05 + 6 . 12 . 0,052 + 4 . 1 . 0,053 + 0,054.
1,054 ≈ 14 + 4 . 13 . 0,05 = 1 + 0,2 = 1,2.
Vậy giá trị gần đúng của khai triển của 1,054 là 1,2.
b) Sử dụng máy tính cầm tay, ta tính được: 1,054 ≈ 1,21550625
Ta có: ∆ ≈ |1,21550625 – 1,2| = 0,01550625
Sai số tuyệt đối là 0,01550625.
Xem thêm lời giải bài tập Toán 10 Kết nối tri thức hay, chi tiết:
Câu 1:
A. Các câu hỏi trong bài
Ở lớp 8, khi học về hằng đẳng thức, ta đã biết khai triển:
(a + b)2 = a2 + 2ab + b2;
(a + b)3 = a3 + 3a2b + 3ab2 + b3.
Quan sát các đơn thức ở vế phải của các đẳng thức trên, hãy nhận xét về quy luật số mũ của a và b. Có thể tìm được cách tính các hệ số của đơn thức trong khai triển (a + b)n khi n ∈ {4; 5} không?
Xem lời giải »
Câu 2:
Sơ đồ hình cây của tích hai nhị thức (a + b) . (c + d) được xây dựng như sau:
• Từ một điểm gốc, kẻ các mũi tên, mỗi mũi tên tương ứng với một đơn thức (gọi là nhãn của mũi tên) của nhị thức thứ nhất (H.8.6);
• Từ ngọn của mỗi mũi tên đã xây dựng, kẻ các mũi tên, mỗi mũi tên tương ứng với một đơn thức của nhị thức thứ hai;
• Tại ngọn của các mũi tên xây dựng tại bước sau cùng, ghi lại tích của các nhãn của các mũi tên đi từ điểm gốc đến đầu mút đó.
Hãy lấy tổng của các tích nhận được và so sánh kết quả với khai triển của tích (a + b) . (c + d).
Xem lời giải »
Câu 3:
Hãy cho biết các đơn thức còn thiếu (...) trong sơ đồ hình cây (H.8.7) của tích (a + b) . (a + b) . (a + b).
Có bao nhiêu tích nhận được lần lượt bằng a3, a2b, ab2, b3?
Hãy so sánh chúng với các hệ số nhận được khi khai triển (a + b)3.
Xem lời giải »
Câu 4:
Sơ đồ hình cây của khai triển (a + b)4 được mô tả như Hình 8.9. Sau khi khai triển, ta thu được một tổng gồm 24 (theo quy tắc nhân) đơn thức có dạng x . y . z . t, trong đó mỗi x, y, z, t là a hoặc b. Chẳng hạn, nếu x, y, t là a, còn z là b thì ta có đơn thức a . a . b . a, thu gọn là a3b. Để có đơn thức này, thì trong 4 nhân tử x, y, z, t có 1 nhân tử là b, 3 nhân tử còn lại là a. Khi đó số đơn thức đồng dạng với a3b trong tổng là \(C_4^1\).
Lập luận tương tự trên, dùng kiến thức về tổ hợp, hãy cho biết trong tổng nêu trên, có bao nhiêu đơn thức đồng dạng với mỗi đơn thức thu gọn sau:
• a4; • a3b; • a2b2; • ab3; • b4.
Xem lời giải »
Câu 5:
B. Bài tập
Khai triển các đa thức:
a) (x – 3)4;
b) (3x – 2y)4;
c) (x + 5)4 + (x – 5)4;
d) (x – 2y)5.
Xem lời giải »
Câu 7:
Biểu diễn \({\left( {3 + \sqrt 2 } \right)^5} - {\left( {3 - \sqrt 2 } \right)^5}\) dưới dạng \(a + b\sqrt 2 \) với a, b là các số nguyên.
Xem lời giải »
Câu 8:
a) Dùng hai số hạng đầu tiên trong khai triển của (1 + 0,02)5 để tính giá trị gần đúng của 1,025.
b) Dùng máy tính cầm tay tính giá trị của 1,025 và tính sai số tuyệt đối của giá trị gần đúng nhận được ở câu a.
Xem lời giải »