Bài 9.11 trang 87 Toán 10 Tập 2 - Kết nối tri thức
Gieo lần lượt hai con xúc xắc cân đối. Tính xác suất để ít nhất một con xúc xắc xuất hiện mặt 6 chấm.
Giải Toán lớp 10 Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển
Bài 9.11 trang 87 Toán 10 Tập 2: Gieo lần lượt hai con xúc xắc cân đối. Tính xác suất để ít nhất một con xúc xắc xuất hiện mặt 6 chấm.
Lời giải:
Hai con xúc xắc cân đối nên các kết quả xảy ra có thể đồng khả năng.
Gieo một con xúc xắc, các kết quả có thể xảy ra là 1, 2, 3, 4, 5, 6 chấm.
Vì gieo lần lượt hai con xúc xắc cân đối, nên theo quy tắc nhân, số phần tử của không gian mẫu là: n(Ω) = 6 . 6 = 36.
Gọi biến cố A: “Ít nhất một con xúc xắc xuất hiện mặt 6 chấm”.
Để ít nhất một con xúc xắc xuất hiện mặt 6 chấm thì có các khả năng là:
+ Trường hợp 1: một con 6 chấm, một con không phải 6 chấm, số khả năng: 1 . 5 . 2 = 10.
(Do gieo lần lượt nên các kết quả: 61; 62; 63; 64; 65; 16; 26; 36; 46; 56).
+ Trường hợp 2: cả hai con 6 chấm, số khả năng: 1.
Vì các trường hợp là rời nhau, nên theo quy tắc cộng, ta có: n(A) = 10 + 1 = 11.
Vậy .
Lời giải bài tập Toán 10 Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển hay, chi tiết khác: