Luyện tập 4 trang 86 Toán 10 Tập 2 - Kết nối tri thức


Cho ba hộp A, B, C. Hộp A có chứa ba thẻ mang số 1, số 2, số 3. Hộp B chứa hai thẻ mang số 2 và số 3. Hộp C chứa hai thẻ mang số 1 và số 2. Từ mỗi hộp ta rút ra ngẫu nhiên một thẻ.

Giải Toán lớp 10 Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển

Luyện tập 4 trang 86 Toán 10 Tập 2: Cho ba hộp A, B, C. Hộp A có chứa ba thẻ mang số 1, số 2, số 3. Hộp B chứa hai thẻ mang số 2 và số 3. Hộp C chứa hai thẻ mang số 1 và số 2. Từ mỗi hộp ta rút ra ngẫu nhiên một thẻ.

a) Vẽ sơ đồ hình cây để mô tả các phần tử của không gian mẫu.

b) Gọi M là biến cố: “Trong ba thẻ rút ra có ít nhất một thẻ số 1”. Biến cố M¯ là tập con nào của không gian mẫu?

c) Tính P(M) và P(M¯).

Lời giải:

a) Theo bài ra, ta vẽ được sơ đồ hình cây mô tả các phần tử của không gian mẫu như sau:

Luyện tập 4 trang 86 Toán 10 Tập 2 | Kết nối tri thức Giải Toán lớp 10

Ta có: Ω = {121; 122; 131; 132; 221; 222; 231; 232; 321; 322; 331; 332}.

Vậy n(Ω) = 12.

b) Biến cố M: “Trong ba thẻ rút ra có ít nhất một thẻ số 1”.

Do đó, biến cố M¯: "Trong ba thẻ rút ra không có thẻ số 1".

Khi đó: M¯= {222; 232; 322; 332}.

c) Ta có: n(M¯)= 4.

Do đó, PM¯=nM¯nΩ=412=13

M¯ là biến cố đối của biến cố M nên PM¯=1PM.

Hay PM=1PM¯=113=23.

Vậy PM=23PM¯=13.

Lời giải bài tập Toán 10 Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2