Cho A = {a; b; m; n}; B = {b; c; m}; C = {a; m; n}. Hãy chọn khẳng định đúng.


Câu hỏi:

Cho A = {a; b; m; n}; B = {b; c; m}; C = {a; m; n}. Hãy chọn khẳng định đúng.

A. \(\left( {{\rm{A}}\backslash {\rm{B}}} \right) \cup \left( {{\rm{A}} \cap {\rm{C}}} \right) = \left\{ {{\rm{a}};{\rm{m}};{\rm{n}}} \right\}\);

B. \(\left( {{\rm{A}}\backslash {\rm{B}}} \right) \cup \left( {{\rm{A}} \cap {\rm{C}}} \right) = \left\{ {{\rm{a}};{\rm{c}};{\rm{m}};{\rm{n}}} \right\}\);

C. \(\left( {{\rm{A}}\backslash {\rm{B}}} \right) \cup \left( {{\rm{A}} \cap {\rm{C}}} \right) = \left\{ {{\rm{a}};{\rm{b}};{\rm{m}};{\rm{n}}} \right\}\);

D. \(\left( {{\rm{A}}\backslash {\rm{B}}} \right) \cup \left( {{\rm{A}} \cap {\rm{C}}} \right) = \left\{ {{\rm{a}};{\rm{n}}} \right\}\).

Trả lời:

Đáp án đúng là: A

A \ B = {a; n}; \({\rm{A}} \cap {\rm{C}} = \left\{ {{\rm{a}};{\rm{m}};{\rm{n}}} \right\}\) \( \Rightarrow \left( {{\rm{A}}\backslash {\rm{B}}} \right) \cup \left( {{\rm{A}} \cap {\rm{C}}} \right) = \left\{ {{\rm{a}};{\rm{m}};{\rm{n}}} \right\}\).

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Số tập con của tập A = {1; 2; 3}

Xem lời giải »


Câu 2:

Hãy liệt kê các phần tử của tập hợp \(X = \,{\rm{\{ }}x \in \mathbb{R},\,{x^2} + x + 1 = 0\} \)

Xem lời giải »


Câu 3:

Số tập con có 2 phần tử của tập M = {1; 2; 3; 4; 5; 6}

Xem lời giải »


Câu 4:

Cho hai tập hợp A = {0; 2; 3; 5} và B = {2; 7}. Khi đó \[{\rm{A}} \cap {\rm{B}}\]

Xem lời giải »


Câu 5:

Cho hai tập \({\rm{A = \{ }}x \in \mathbb{R},\,x + 3 < 4 + 2x\)} \({\rm{B = \{ }}x \in \mathbb{R},\,5x - 3 < 4x - 1\} \). Hỏi các số tự nhiên thuộc cả hai tập A và B là những số nào?

Xem lời giải »


Câu 6:

Cho \({\rm{A = \{ }}x \in \mathbb{N},\,(2x - {x^2})(2{x^2} - 3x - 2) = 0\} \) \({\rm{B = \{ n}} \in \mathbb{N},\,3 < {n^2} < 30\} \). Tìm kết quả phép toán \[{\rm{A}} \cap {\rm{B}}\].

Xem lời giải »


Câu 7:

Cho hai tập A = [–1 ; 3); B = [a; a + 3]. Với giá trị nào của a thì \[{\rm{A}} \cup {\rm{B}} = \emptyset \].

Xem lời giải »


Câu 8:

Cho hai tập A = [0; 5]; B = (2a; 3a + 1), a > –1. Với giá trị nào của a thì \[{\rm{A}} \cap {\rm{B}} \ne \emptyset \].

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2