Cho các số 0; 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên lẻ gồm 4 chữ số đôi một khác nhau
Câu hỏi:
Cho các số 0; 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên lẻ gồm 4 chữ số đôi một khác nhau
A. 300;
B. 261;
C. 235;
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Gọi số cần lập , a ≠ 0.
Công đoạn 1, chọn số d có 3 cách chọn (Vì là số lẻ nên d chỉ có thể chọn một trong 3 số 1; 3; 5).
Công đoạn 2, chọn số a có 5 cách chọn (Vì a ≠ 0; a ≠ d nên a không được chọn số 0 và số d đã chọn).
Công đoạn 3, chọn số b có 5 cách chọn (Vì b ≠ a; b ≠ d nên b không được chọn lại số a, d đã chọn).
Công đoạn 4, chọn số c có 4 cách chọn (Vì c ≠ a; c ≠ b; c ≠ d nên c không được chọn lại số a, b, d đã chọn).
Tổng kết, áp dụng quy tắc nhân ta có số các số tự nhiên lẻ gồm 4 chữ số đôi một khác nhau là: 3.5.5.4 = 300.