Cho cos alpha = -4/5 và góc alpha thỏa mãn 90 độ < alpha < 180 độ
Câu hỏi:
Cho \[\cos \alpha = - \frac{4}{5}\] và góc α thỏa mãn 90° < α < 180°. Khi đó.
A. \[\cot \alpha = \frac{4}{3}\];
B. \[\sin \alpha = \frac{3}{5}\];
C. \[\tan \alpha = \frac{4}{5}\].
D. \[\sin \alpha = - \frac{3}{5}\].
Trả lời:
Đáp án đúng là: B
Ta có sin2α + cos2α = 1
⇔ sin2α = 1 – cos2α = 1 – \({\left( { - \frac{4}{5}} \right)^2}\)= 1 – \(\frac{{16}}{{25}}\)= \(\frac{9}{{25}}.\)
⇔ \(\left[ \begin{array}{l}\sin \alpha = \frac{3}{5}\\\sin \alpha = - \frac{3}{5}\end{array} \right.\)
Vì 90° < α < 180° nên sinα > 0. Do đó \(\sin \alpha = \frac{3}{5}\)
⇒ tanα = \(\frac{{\sin \alpha }}{{cos\alpha }} = - \frac{3}{4}\), cotα = \(\frac{{co{\mathop{\rm s}\nolimits} \alpha }}{{\sin \alpha }} = - \frac{4}{3}\).
Vậy đáp án đúng là B.