Cho hai điểm phân biệt A và B. Xác định ví trí điểm K thỏa mãn


Câu hỏi:

Cho hai điểm phân biệt A và B. Xác định ví trí điểm K thỏa mãn \(\overrightarrow {KA} + 2\overrightarrow {KB} = \overrightarrow 0 \).

A. K là trung điểm của AB

B. K là điểm nằm giữa I và A thỏa mãn IK = \(\frac{1}{3}\) IB với I là trung điểm của AB.

C. K là điểm nằm giữa I và B thỏa mãn IK = \(\frac{1}{3}\) IB với I là trung điểm của AB.

D. K là điểm nằm giữa I và A thỏa mãn IK = \(\frac{1}{3}\) IA với I là trung điểm của AB.

Trả lời:

Đáp án đúng là C

Gọi I là trung điểm của đoạn thẳng AB. Khi đó \(\overrightarrow {IA} + \overrightarrow {IB} = \overrightarrow 0 \)

Xét đẳng thức: \(\overrightarrow {KA} + 2\overrightarrow {KB} = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {KI} + \overrightarrow {IA} + 2\left( {\overrightarrow {KI} + \overrightarrow {IB} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow 3\overrightarrow {KI} + \overrightarrow {IA} + 2\overrightarrow {IB} = \overrightarrow 0 \)

\( \Leftrightarrow 3\overrightarrow {KI} + \left( {\overrightarrow {IA} + \overrightarrow {IB} } \right) + \overrightarrow {IB} = \overrightarrow 0 \)

\( \Leftrightarrow 3\overrightarrow {KI} + \overrightarrow 0 + \overrightarrow {IB} = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {KI} = - \frac{1}{3}\overrightarrow {IB} \) hay \(\overrightarrow {IK} = \frac{1}{3}\overrightarrow {IB} \)

Vì vậy điểm K là điểm nằm giữa I và B thỏa mãn \(IK = \frac{1}{3}IB\).

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Cho vectơ \(\overrightarrow a \ne \overrightarrow 0 \) với số thực k như thế nào thì vectơ \(k\overrightarrow a \) ngược hướng với vectơ \(\overrightarrow a \).

Xem lời giải »


Câu 2:

Cho vectơ \(\overrightarrow a \), \(\overrightarrow b \) và hai số thực k, t. Khẳng định nào sau đây là sai?

Xem lời giải »


Câu 3:

Cho ba điểm A, B, C phân biệt sao cho \(\overrightarrow {AB} = k\overrightarrow {AC} \).Biết rằng C là trung điểm đoạn thẳng AB. Giá trị k thỏa mãn điều kiện nào sau đây?

Xem lời giải »


Câu 4:

Cho tam giác ABC có đường trung tuyến AM. Khi đó \(\overrightarrow {AM} = a\overrightarrow {AB} + b\overrightarrow {AC} \). Tính S = a + 2b.

Xem lời giải »


Câu 5:

Các tam giác ABC có trọng tâm G; M, N lần lượt là trung điểm của BC và AB. Biểu thị \(\overrightarrow {MG} \) thông qua hai vec tơ \(\overrightarrow {AB} ,\overrightarrow {AC} \).

Xem lời giải »


Câu 6:

Cho tam giác ABC có G là trọng tâm tam giác. Hãy xác định điểm M để \(\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 \).

Xem lời giải »


Câu 7:

Trong hình vẽ, hãy biểu thị mỗi vectơ \(\overrightarrow u ,\overrightarrow v \)hai vectơ \(\overrightarrow a ,\overrightarrow b \), tức là tìm các số x, y, z, t để \(\overrightarrow u = x\overrightarrow a + y\overrightarrow b ,\overrightarrow v = t\overrightarrow a + z\overrightarrow b .\)

Trong hình vẽ, hãy biểu thị mỗi vectơ u, vecto v hai vecto a, vecto b (ảnh 1)

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2