Cho tam giác ABC có G là trọng tâm tam giác. Hãy xác định điểm
Câu hỏi:
Cho tam giác ABC có G là trọng tâm tam giác. Hãy xác định điểm M để \(\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 \).
A. M là trung điểm của đoạn thẳng GC;
B. M nằm giữa G và C sao cho GM = 4GC;
C. M nằm ngoài G và C sao cho GM = 4GC;
D. M nằm giữa G và C sao cho \(GM = \frac{1}{4}GC\).
Trả lời:
Đáp án đúng là D
Vì G là trọng tâm tam giác ABC nên \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \).
Xét \(\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 \)
\( \Leftrightarrow \overrightarrow {MG} + \overrightarrow {GA} + \overrightarrow {MG} + \overrightarrow {GB} + 2\left( {\overrightarrow {MG} + \overrightarrow {GC} } \right) = \overrightarrow 0 \)
\( \Leftrightarrow 4\overrightarrow {MG} + \left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right) + \overrightarrow {GC} = \overrightarrow 0 \)
\( \Leftrightarrow 4\overrightarrow {MG} + \overrightarrow {GC} = \overrightarrow 0 \)
\( \Leftrightarrow 4\overrightarrow {MG} = - \overrightarrow {GC} \)
\( \Leftrightarrow \overrightarrow {GM} = \frac{1}{4}\overrightarrow {GC} \).
Vậy G là điểm nằm giữa G và C sao cho \(GM = \frac{1}{4}GC\).