Cho hệ 2x+y>2 (1) và x+1/2y<1 (2). Gọi S1 là tập nghiệm của bất phương trình (1), S2 là tập nghiệm
Câu hỏi:
Cho hệ . Gọi S1 là tập nghiệm của bất phương trình (1), S2 là tập nghiệm của bất phương trình (2) và S là tập nghiệm của hệ thì:
A.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Trước hết, ta vẽ hai đường thẳng:
(d1): 2x + y = 2 đường thẳng d1 đi qua hai điểm (0; 2) và (1; 0)
Xét điểm O(0; 0) thay vào phương trình đường thẳng ta có 2.0 + 0 = 0 < 2, không thoả mãn bất phương trình 2x + y > 2. Vậy O(0; 0) không thuộc miền nghiệm của bất phương trình. Miền nghiệm của bất phương trình là nửa mặt phẳng không chứa điểm O và không kể đường thẳng d1 được biểu diễn bởi nửa mặt phẳng không bị gạch chéo (không kể biên) của (d1)
Vẽ đường thẳng (d2): đường thẳng d2 đi qua hai điểm (0; 2) và (1; 0).
Xét điểm O(0; 0) thay vào phương trình đường thẳng ta có , thoả mãn bất phương trình . Vậy O(0; 0) thuộc miền nghiệm của bất phương trình. Miền nghiệm của bất phương trình là nửa mặt phẳng chứa điểm O và không kể đường thẳng d2 được biểu diễn bởi nửa mặt phẳng không bị gạch chéo(không kể biên) của (d2).
Miền nghiệm của hệ bất phương trình được biểu diễn trong hình dưới đây
Từ đồ thị biểu diễn miền nghiệm của hệ bất phương trình ta có d1 trùng d2 mà miền nghiệm của (1) được chia bởi d1 và nửa mặt phẳng không chứa O(0; 0) (không kể d1) ; miền nghiệm của (2) được chia bởi d2 và nửa mặt phẳng chứa điểm O(0; 0) (không kể d2). Vậy .