Cho hệ phương trình x - y > 1; 1/3x - y < = 2 có tập nghiệm là S
Câu hỏi:
Cho hệ bất phương trình \[\left\{ \begin{array}{l}x - y > 1\\\frac{1}{3}x\,\, - \,y\, \le 2\end{array} \right.\] có tập nghiệm là S. Trong các khẳng định sau, khẳng định nào đúng?
A. (0; 1) ∈ S;
B. (0; –1) ∉ S;
C. \(\left( {\frac{1}{3};1} \right)\) ∈ S;
D. \(\left( { - \frac{1}{3};1} \right)\) ∉ S.
Trả lời:
Đáp án đúng là: B
+ Ta có 0 – 1 = –1 < 1 nên (0; 1) không là nghiệm của bất phương trình x – y > 1.
Do đó (0; 1) không là nghiệm của hệ \[\left\{ \begin{array}{l}x - y > 1\\\frac{1}{3}x\,\, - \,y\, \le 2\end{array} \right.\].
Suy ra (0; 1) ∉ S. Vậy khẳng định A là sai.
+ Ta có 0 – (– 1) = 1 nên (0; –1) không là nghiệm của bất phương trình x – y > 1.
Do đó (0; –1) không là nghiệm của hệ \[\left\{ \begin{array}{l}x - y > 1\\\frac{1}{3}x\,\, - \,y\, \le 2\end{array} \right.\].
Suy ra (0; –1) ∉ S. Vậy khẳng định B là đúng.
+ Ta có \(\frac{1}{3}\) – 1 = \( - \frac{2}{3}\)< 1 nên (\(\frac{1}{3}\); 1) không là nghiệm của bất phương trình x – y > 1.
Do đó (\(\frac{1}{3}\); 1) không là nghiệm của hệ \[\left\{ \begin{array}{l}x - y > 1\\\frac{1}{3}x\,\, - \,y\, \le 2\end{array} \right.\].
Suy ra (\(\frac{1}{3}\); 1) ∉ S. Vậy khẳng định C là sai.
+ Ta có \(\frac{1}{3}\) – (\( - \frac{5}{3}\))= 2 > 1 và \(\frac{1}{3}.\frac{1}{3} - ( - \frac{5}{3}) = \frac{{16}}{9} < 2\) nên (\(\frac{1}{3}\); \( - \frac{5}{3}\)) là nghiệm của cả hai bất phương trình x – y > 1 và \(\frac{1}{3}x - y \le 2\).
Do đó (\(\frac{1}{3}\); \( - \frac{5}{3}\)) là nghiệm của hệ \[\left\{ \begin{array}{l}x - y > 1\\\frac{1}{3}x\,\, - \,y\, \le 2\end{array} \right.\].
Suy ra (\(\frac{1}{3}\); \( - \frac{5}{3}\)) ∈ S. Vậy khẳng định D là sai.
Vậy ta chọn đáp án B.