Cho hypebol có phương trình: x^2/a^2 - y^2/b^2 = 1. a) Tìm các giao điểm A1, A2 của hypebol với trục hoành (hoành độ của A1 nhỏ hơn của A2). b) Chứng minh rằng, nếu điểm M(x; y) thuộc nhánh
Câu hỏi:
Cho hypebol có phương trình: \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\).
a) Tìm các giao điểm A1, A2 của hypebol với trục hoành (hoành độ của A1 nhỏ hơn của A2).
b) Chứng minh rằng, nếu điểm M(x; y) thuộc nhánh nằm bên trái trục tung của hypebol thì x ≤ − a, nếu điểm M(x; y) thuộc nhánh nằm bên phải trục tung của hypebol thì x ≥ a.
c) Tìm các điểm M1, M2 tương ứng thuộc cách nhánh bên trái, bên phải trục tung của hypebol để M1M2 nhỏ nhất.
Trả lời:
Hướng dẫn giải
a) A1 thuộc trục hoành nên y = 0, lại có A1 thuộc hypebol, do đó ta có: \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{0^2}}}{{{b^2}}} = 1\)
⇔ x2 = a2 ⇔ x = ± a
Do hoành độ của A1 nhỏ hơn hoành độ của A2 nên ta xác định được tọa độ của hai điểm A1 và A2 là: A1(− a; 0) và A2(a; 0).
b) Điểm M(x; y) thuộc hypebol nên ta có: \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\).
Ta cần chứng minh: x2 ≥ a2 thì yêu cầu của bài toán được giải quyết.
Giả sử: x2 ≥ a2 \( \Leftrightarrow \frac{{{x^2}}}{{{a^2}}} \ge 1\) (chia cả 2 vế cho a2).
Vì \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) nên \(\frac{{{x^2}}}{{{a^2}}} = 1 + \frac{{{y^2}}}{{{b^2}}} \ge 1\) (do \(\frac{{{y^2}}}{{{b^2}}} \ge 0\))
Do đó: \(\frac{{{x^2}}}{{{a^2}}} \ge 1\) luôn đúng.
Suy ra x2 ≥ a2.
+) Nếu M thuộc nhánh bên trái trục tung của hypebol thì hoành độ x < 0 mà x2 ≥ a2 nên x ≤ − a.
+) Nếu M thuộc nhánh bên phải trục tung của hypebol thì hoành độ x > 0 mà x2 ≥ a2 nên x ≥ a.
c) Gọi điểm M1(x1; y1) thuộc nhánh bên trái trục tung của hypebol nên hoành độ x1 < 0, M2(x2; y2) thuộc nhánh bên phải trục tung của hypebol nên hoành độ x2 > 0.
Theo câu b ta có: x1 ≤ − a và x2 ≥ a nên |x1| + |x2| ≥ a + a = 2a.
Do x1 < 0 và x2 > 0 nên x2 − x1 = |x2| + |x1| ≥ a + a = 2a.
Ta có: M1M2 = \(\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \); A1A2 = \(\sqrt {{{\left( {a - \left( { - a} \right)} \right)}^2} + {{\left( {0 - 0} \right)}^2}} = \sqrt {{{\left( {2a} \right)}^2}} \)
Lại có: (x2 – x1)2 + (y2 – y1)2 ≥ (|x2| + |x1|)2 + 0 ≥ (2a)2.
Nên (M1M2)2 ≥ (A1A2)2
Suy ra M1M2 ≥ A1A2.
Dấu "=" xảy ra khi và chỉ khi M1 trùng A1 và M2 trùng A2.
Vậy để M1M2 nhỏ nhất thì M1 trùng A1 và M2 trùng A2 hay M1(− a; 0) và M2(a; 0).