Cho hypebol có phương trình: x^2/a^2 - y^2/b^2 = 1. a) Tìm các giao điểm A1, A2 của hypebol với trục hoành (hoành độ của A1 nhỏ hơn của A2). b) Chứng minh rằng, nếu điểm M(x; y) thuộc nhánh


Câu hỏi:

Cho hypebol có phương trình: \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\).

a) Tìm các giao điểm A1, A2 của hypebol với trục hoành (hoành độ của Anhỏ hơn của A2).

b) Chứng minh rằng, nếu điểm M(x; y) thuộc nhánh nằm bên trái trục tung của hypebol thì x ≤ − a, nếu điểm M(x; y) thuộc nhánh nằm bên phải trục tung của hypebol thì x ≥ a.

c) Tìm các điểm M1, M2 tương ứng thuộc cách nhánh bên trái, bên phải trục tung của hypebol để  M1M2 nhỏ nhất.

Trả lời:

Hướng dẫn giải

a) A1 thuộc trục hoành nên y = 0, lại có A1 thuộc hypebol, do đó ta có: \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{0^2}}}{{{b^2}}} = 1\)

 x2 = a2 x = ± a

Do hoành độ của A1 nhỏ hơn hoành độ của A2 nên ta xác định được tọa độ của hai điểm A1 và A2 là: A1(− a; 0) và A2(a; 0).

b) Điểm M(x; y) thuộc hypebol nên ta có: \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\).

Ta cần chứng minh: x2 ≥ a2 thì yêu cầu của bài toán được giải quyết.

Giả sử: x2 ≥ a2 \( \Leftrightarrow \frac{{{x^2}}}{{{a^2}}} \ge 1\)    (chia cả 2 vế cho a2).

Vì \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) nên \(\frac{{{x^2}}}{{{a^2}}} = 1 + \frac{{{y^2}}}{{{b^2}}} \ge 1\) (do \(\frac{{{y^2}}}{{{b^2}}} \ge 0\))

Do đó: \(\frac{{{x^2}}}{{{a^2}}} \ge 1\) luôn đúng.

Suy ra x2 ≥ a2.

+) Nếu M thuộc nhánh bên trái trục tung của hypebol thì hoành độ x < 0 mà x2 ≥ anên x ≤ − a.

+) Nếu  M thuộc nhánh bên phải trục tung của hypebol thì hoành độ x > 0 mà x2 ≥ anên x ≥ a.

c) Gọi điểm M1(x1; y1) thuộc nhánh bên trái trục tung của hypebol nên hoành độ x1 < 0, M2(x2; y2) thuộc nhánh bên phải trục tung của hypebol nên hoành độ x2 > 0.

Theo câu b ta có: x1 ≤ − a và x2 ≥ a nên |x1| + |x2| ≥ a + a = 2a.

Do x1 < 0 và x2 > 0 nên x2 − x1 = |x2| + |x1| ≥ a + a = 2a.

Ta có: M1M2 = \(\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \); A1A2 = \(\sqrt {{{\left( {a - \left( { - a} \right)} \right)}^2} + {{\left( {0 - 0} \right)}^2}} = \sqrt {{{\left( {2a} \right)}^2}} \)

Lại có: (x2 – x1)2 + (y2 – y1)2 ≥ (|x2| + |x1|)2 + 0 ≥ (2a)2.

Nên (M1M2)2 ≥ (A1A2)2

Suy ra M1M2 ≥ A1A2.

Dấu "=" xảy ra khi và chỉ khi M1 trùng A1 và M2 trùng A2.

Vậy để M1M2 nhỏ nhất thì M1 trùng A1 và M2 trùng Ahay M1(− a; 0) và M2(a; 0).

Xem thêm lời giải bài tập Toán 10 Kết nối tri thức hay, chi tiết:

Câu 1:

A – Trắc nghiệm

Phương trình nào sau đây là phương trình tham số của đường thẳng?

Xem lời giải »


Câu 2:

Phương trình nào sau đây là phương trình tổng quát của đường thẳng?

Xem lời giải »


Câu 3:

Phương trình nào sau đây là phương trình của đường tròn?

Xem lời giải »


Câu 4:

Phương trình nào sau đây là phương trình chính tắc của đường elip?

Xem lời giải »


Câu 5:

Một cột trụ hình hypebol (H.7.36), có chiều cao 6 m, chỗ nhỏ nhất ở chính giữa và rộng 0,8 m, đỉnh cột và đáy cột đều rộng 1 m. Tính độ rộng của cột ở độ cao 5 m (tính theo đơn vị mét và làm tròn tới hai chữ số sau dấu phẩy).
Media VietJack

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2