Cho mệnh đề chứa biến P(x) = {x thuộc ℤ : |x^2 – 2x – 3| = x^2 + |2x + 3|}. Trong đoạn [-2020; 2021]


Câu hỏi:

Cho mệnh đề chứa biến P(x) = {x ℤ : |x2 – 2x – 3| = x2 + |2x + 3|}. Trong đoạn [-2020; 2021] có bao nhiêu giá trị của x để mệnh đề chứa biến P(x) là mệnh đề đúng?

A. 2020;

B. 2021;

C. 2022;

D. 2023.

Trả lời:

Hướng dẫn giải

Đáp án đúng là: A

Số giá trị nguyên để mệnh đề P(x) là mệnh đề đúng chính là số nghiệm nguyên của phương trình |x2 – 2x – 3| = x2 + |2x + 3| (1).

+ Nếu x ≥ 32  thì ta có:

(1) |x2 – 2x – 3| = x2 + |2x + 3| x2 2x  3 = x2+ 2x + 3x22x + 3 = x2+ 2x + 3   x=32x=0 .Mà x và x [-2020; 2021] nên x = 0 thỏa mãn.

+ Nếu x < 32  thì ta có (1) |x2 – 2x – 3| = x2 – 2x – 3. Sử dụng định nghĩa giá trị tuyệt đối, kết hợp với điều kiện, ta có nghiệm của (1) trong trường hợp này:

(1)x2 2x  30x<32x1x3x<32x<32

Mà x [-2020;2021] nên  x {-2; -3; …; -2020}.

Do đó tập nghiệm của phương trình là S = {0; -2; -3; …; -2020}.

Vậy có 2020 số nguyên thỏa mãn yêu cầu bài toán.

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Cho mệnh đề P: "Tích 3 số tự nhiên liên tiếp chia hết cho 6"?

Xét tính đúng sai của mệnh đề trên và tìm mệnh đề phủ định của mệnh đề đó.

Xem lời giải »


Câu 2:

Mệnh đề nào sau đây đúng?

Xem lời giải »


Câu 3:

Mệnh đề nào sau đây đúng?

Xem lời giải »


Câu 4:

Cho mệnh đề sau: “Nếu x là một số nguyên tố lớn hơn 3 thì x2 + 20 là một hợp số (tức là số có ước khác 1 và chính nó)”.

Đáp án nào dưới đây là cách viết khác với mệnh đề đã cho?

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2