Cho mệnh đề chứa biến P(x) = {x thuộc ℤ : |x^2 – 2x – 3| = x^2 + |2x + 3|}. Trong đoạn


Câu hỏi:

Cho mệnh đề chứa biến P(x) = {x ℤ : |x2 – 2x – 3| = x2 + |2x + 3|}. Trong đoạn [-2020; 2021] có bao nhiêu giá trị của x để mệnh đề chứa biến P(x) là mệnh đề đúng?

A. 2020;

B. 2021;

C. 2022;

C. 2023

Trả lời:

Hướng dẫn giải

Đáp án đúng là: A

Số giá trị nguyên để mệnh đề P(x) là mệnh đề đúng chính là số nghiệm nguyên của phương trình |x2 – 2x – 3| = x2 + |2x + 3| (1).

+ Nếu x ≥  32 thì ta có:

(1) |x2 – 2x – 3| = x2 + |2x + 3| x2 2x  3 = x2+ 2x + 3x22x + 3 = x2+ 2x + 3x=32x=0 .Mà x và x [-2020; 2021] nên x = 0 thỏa mãn.

+ Nếu x < 32 thì ta có (1) |x2 – 2x – 3| = x2 – 2x – 3. Sử dụng định nghĩa giá trị tuyệt đối, kết hợp với điều kiện, ta có nghiệm của (1) trong trường hợp này:

(1) x2 2x  30x<32x1x3x<32x<32

Mà x [-2020;2021] nên x {-2; -3; …; -2020}.

Do đó tập nghiệm của phương trình là S = {0; -2; -3; …; -2020}.

Vậy có 2020 số nguyên thỏa mãn yêu cầu bài toán.

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Cho A = {x ℝ | |x – m| ≤ 25}; B = {x ℝ | |x| ≥ 2020}.

Có bao nhiêu giá trị nguyên m thỏa mãn A ∩ B = .

Xem lời giải »


Câu 2:

Hội khỏe Phù Đổng của trường Trần Phú, lớp 10A có 45 học sinh, trong đó có 25 học sinh thi điền kinh, 20 học sinh thi nhảy xa, 15 học sinh thi nhảy cao, 7 em không tham gia môn nào, 5 em tham gia cả 3 môn. Hỏi số em tham gia chỉ một môn trong ba môn trên là bao nhiêu?

Xem lời giải »


Câu 3:

Cho hai tập hợp P = [3m – 6; 4] và Q = (-2; m + 1), m ℝ. Tìm m để

P\Q = .

Xem lời giải »


Câu 4:

Mệnh đề nào sau đây đúng?

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2