Cho phương trình \(\sqrt {{x^2} - 3x + 2}  = \sqrt { - {x^2} - 2x + 2} \). a) Bình phương hai vế phương trình để khử căn và giải phương trình nhận được.


Câu hỏi:

A. Các câu hỏi trong bài

Cho phương trình \(\sqrt {{x^2} - 3x + 2} = \sqrt { - {x^2} - 2x + 2} \).

a) Bình phương hai vế phương trình để khử căn và giải phương trình nhận được.

b) Thử lại các giá trị x tìm được ở câu a có thỏa mãn phương trình đã cho hay không?

Trả lời:

Hướng dẫn giải

a) Bình phương hai vế của phương trình \(\sqrt {{x^2} - 3x + 2} = \sqrt { - {x^2} - 2x + 2} \) ta được:

x2 – 3x + 2 = – x2 – 2x + 2 (1)

Giải phương trình trên ta có:

(1) 2x2 – x = 0

x(2x – 1) = 0

x = 0 hoặc 2x – 1 = 0

x = 0 hoặc x = \(\frac{1}{2}\)

b) Thử lại ta có:

+ Với x = 0, thay vào phương trình đã cho ta được:

\(\sqrt {{0^2} - 3.0 + 2} = \sqrt { - {0^2} - 2.0 + 2} \)\( \Leftrightarrow \sqrt 2 = \sqrt 2 \) (luôn đúng).

+ Với x = \(\frac{1}{2}\), thay vào phương trình đã cho ta được:

\(\sqrt {{{\left( {\frac{1}{2}} \right)}^2} - 3.\frac{1}{2} + 2} = \sqrt { - {{\left( {\frac{1}{2}} \right)}^2} - 2.\frac{1}{2} + 2} \)\( \Leftrightarrow \sqrt {\frac{3}{4}} = \sqrt {\frac{3}{4}} \) (luôn đúng)

Vậy các giá trị x tìm được ở câu a thỏa mãn phương trình đã cho.

Xem thêm lời giải bài tập Toán 10 Kết nối tri thức hay, chi tiết:

Câu 1:

Giải các phương trình sau:

a) \(\sqrt {3{x^2} - 6x + 1} = \sqrt { - 2{x^2} - 9x + 1} \);

b) \(\sqrt {2{x^2} - 3x - 5} = \sqrt {{x^2} - 7} \).

Xem lời giải »


Câu 2:

Cho phương trình \(\sqrt {26{x^2} - 63x + 38} = 5x - 6\).

a) Bình phương hai vế và giải phương trình nhận được.

b) Thử lại các giá trị x tìm được ở câu a có thỏa mãn phương trình hay không?

Xem lời giải »


Câu 3:

Giải các phương trình sau:

a) \(\sqrt {2{x^2} + x + 3} = 1 - x\);

b) \(\sqrt {3{x^2} - 13x + 14} = x - 3\).

Xem lời giải »


Câu 4:

Bác Việt sống và làm việc tại trạm hải đăng cách bờ biển 4 km. Hằng tuần bác chèo thuyền vào vị trí gần nhất trên bờ biển là bến Bính để nhận hàng hóa do cơ quan cung cấp. Tuần này, do trục trặc về vận chuyển nên toàn bộ số hàng vẫn đang nằm ở thôn Hoành, bên bờ biển cách bến Bính 9,25 km và sẽ được anh Nam vận chuyển trên con đường dọc bờ biển tới bến Bính bằng xe kéo. Bác Việt đã gọi điện thống nhất với anh Nam là họ sẽ gặp nhau ở vị trí nào đó giữa bến Bính và thôn Hoành để hai người có mặt tại đó cùng lúc, không mất thời gian chờ nhau. Giả thiết rằng đường dọc bờ biển là thẳng và bác Việt cũng di chuyển theo một đường thẳng để tới điểm hẹn. Tìm vị trí hai người hẹn gặp, biết rằng vận tốc của anh Nam là 5 km/h và của bác Việt là 4 km/h.

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2