Cho tam giác ABC có M là trung điểm của AB, N là trung điểm của


Câu hỏi:

Cho tam giác ABC có M là trung điểm của AB, N là trung điểm của AC và P là trung điểm của BC.

Cho tam giác ABC có M là trung điểm của AB, N là trung điểm của  (ảnh 1)

Phát biểu nào dưới đây là sai.

A. \(\overrightarrow {MN} = \overrightarrow {PC} \);

B. \(\overrightarrow {AA} \) cùng hướng với \(\overrightarrow {PP} \);

C. \(\overrightarrow {MB} = \overrightarrow {AM} \);

D. \(\overrightarrow {MN} = \overrightarrow {PB} \).

Trả lời:

Đáp án đúng là D

+) Xét tam giác ABC, có:

M là trung điểm AB

N là trung điểm của AC

MN là đường trung bình của tam giác ABC

MN // BC và MN = \(\frac{1}{2}\)BC

Mà BP = PC = \(\frac{1}{2}\)BC (P là trung điểm của BC)

MN = CP = PB (1)

Vì MN // BC nên MN // CP. Khi đó \(\overrightarrow {MN} \)\(\overrightarrow {PC} \) cùng phương. Suy ra \(\overrightarrow {MN} \)\(\overrightarrow {PC} \) cùng hướng (2)

Từ (1) và (2) suy ra \(\overrightarrow {MN} \) = \(\overrightarrow {CP} \). Do đó đáp án A đúng.

Tương tự MN //BC hay MN // PB. Khi đó \(\overrightarrow {MN} \)\(\overrightarrow {PB} \) cùng phương nhưng ngược hướng (3)

Từ (1) và (3) suy ra \(\overrightarrow {MN} \) không bằng \(\overrightarrow {PB} \). Do đó đáp án D sai.

+) Ta có \(\overrightarrow {AA} \)\(\overrightarrow {PP} \) là các vectơ – không.

Mà mọi vectơ – không có cùng độ dài và cùng hướng nên bằng nhau

Suy ra \(\overrightarrow {AA} \) cùng hướng với \(\overrightarrow {PP} \). Do đó đáp án B đúng.

+) Hai vec tơ \(\overrightarrow {AM} \)\(\overrightarrow {MB} \) cùng hướng

Vì M là trung điểm của AB nên AM = MB

Suy ra \(\overrightarrow {AM} = \overrightarrow {MB} \). Do đó đáp án C đúng.

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Cho hình bình hành ABCD. Vectơ nào dưới đây bằng \(\overrightarrow {CD} \).

Xem lời giải »


Câu 2:

Trong mặt phẳng tọa độ Oxy, cho hai điểm M(3; -1) và N(2; -5). Điểm nào sau đây thẳng hàng với M, N?

Xem lời giải »


Câu 3:

Cho tam giác ABC vuông tại A, có AB = 2cm, AC = 7cm. Điểm M là trung điểm của BC. Tính độ dài vectơ AM.

Xem lời giải »


Câu 4:

Cho hình thoi ABCD có độ dài hai đường chéo AC, BD lần lượt là 8 cm và 6 cm. Tính độ dài vectơ \(\overrightarrow {AB} \).

Cho hình thoi ABCD có độ dài hai đường chéo AC, BD lần lượt là 8  (ảnh 1)

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2