Có 30 tấm thẻ đánh số từ 1 đến 30. Chọn ngẫu nhiên ra 10 tấm thẻ. Tìm xác suất để


Câu hỏi:

Có 30 tấm thẻ đánh số từ 1 đến 30. Chọn ngẫu nhiên ra 10 tấm thẻ. Tìm xác suất để có 5 tấm thẻ mang số lẻ và 5 tấm thẻ mang số chẵn trong đó chỉ có đúng một tấm thẻ chia hết cho 10.

A. \(\frac{{99}}{{667}}\);

B. \(\frac{{98}}{{667}}\);

C. \(\frac{{97}}{{667}}\);

D. \(\frac{{96}}{{667}}\).

Trả lời:

Đáp án đúng là: A

Số phần tử của không gian mẫu là: n(Ω) = \(C_{30}^{10} = 30045015\)(vì chọn 10 tấm thẻ trong 30 tấm thẻ).

Gọi A là biến cố lấy được 5 tấm thẻ mang số lẻ và 5 tấm thẻ mang số chẵn trong đó chỉ có đúng một tấm thẻ chia hết cho 10.

Công đoạn 1, lấy 5 tấm thẻ mang số lẻ có: \(C_{15}^5\) = 3003 (cách) (vì có 15 tấm thẻ đánh số lẻ và lấy ra 3 tấm thẻ).

Công đoạn 2, lấy 5 tấm thẻ mang số chẵn trong đó chỉ có đúng một tấm thẻ chia hết cho 10 có: \(C_3^1C_{12}^4\) = 1485 (cách) (vì có 3 tấm thẻ đánh số chia hết cho 10 và lấy ra một tấm thẻ, có 12 tấm thẻ còn lại đánh số chẵn và lấy ra 4 tấm thẻ).

Số phần tử của biến cố A là: 3003.1485 = 4459455 (cách).

Vậy xác suất của biến cố A là: P(A) = \(\frac{{4459455}}{{30045015}} = \frac{{99}}{{667}}\).

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Một hộp có 5 viên bi đen, 4 viên bi trắng. Chọn ngẫu nhiên 2 viên bi. Xác suất 2 viên bi được chọn có đủ hai màu là

Xem lời giải »


Câu 2:

Một bình đựng 4 quả cầu xanh và 6 quả cầu trắng. Chọn ngẫu nhiên 4 quả cầu. Xác suất để được 2 quả cầu xanh và 2 quả cầu trắng là:

Xem lời giải »


Câu 3:

Chọn ngẫu nhiên 6 số nguyên dương trong tập {1; 2; 3; 4; 5; 6; 7; 8; 9; 10} và sắp xếp chúng theo thứ tự tăng dần. Gọi P là xác suất để số 3 được chọn và xếp ở vị trí thứ 2. Khi đó P bằng:

Xem lời giải »


Câu 4:

Cho 100 tấm thẻ được đánh số từ 1 đến 100, chọn ngẫu nhiên 3 tấm thẻ. Xác suất để chọn được 3 tấm thẻ có tổng các số ghi trên thẻ là số chia hết cho 2 là

Xem lời giải »


Câu 5:

Có mười cái ghế (mỗi ghế chỉ ngồi được một người) được sắp trên một hàng ngang. Xếp ngẫu nhiên 7 học sinh ngồi vào, mỗi học sinh ngồi đúng một ghế. Tính xác suất sao cho không có hai ghế trống nào kề nhau.,

Xem lời giải »


Câu 6:

Gieo đồng tiền hai lần. Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần

Xem lời giải »


Câu 7:

Một túi chứa 2 bi trắng và 3 bi đen. Rút ra 3 bi. Xác suất để được ít nhất 1 bi trắng là:

Xem lời giải »


Câu 8:

Gieo đồng tiền 5 lần cân đối và đồng chất. Xác suất để được ít nhất một lần xuất hiện mặt sấp là:

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2