Để f(x) = x2 + (m + 1)x +2m + 7 > 0 với mọi x thì
Câu hỏi:
Để f(x) = x2 + (m + 1)x +2m + 7 > 0 với mọi x thì
A. – 3 ≤ m ≤ 9;
B. \(\left[ \begin{array}{l}m < - 3\\m > 9\end{array} \right.\).
C. – 3 < m < 9;
D. \(\left[ \begin{array}{l}m \le - 3\\m \ge 9\end{array} \right.\).
Trả lời:
Đáp án đúng là: C
Ta có f(x) > 0 với
Xét tam thức bậc hai f(m) = m2 – 6m – 27, có ∆’ = 9 – (-27) = 36 > 0. Do đó f(m) có hai nghiệm phân biệt là m = -3 và m = 9.
Ta có bảng xét dấu
Dựa vào bảng xét dấu để ∆ < 0 thì – 3 < m < 9.
Vậy đáp án đúng là C.