Đường thẳng nào dưới đây đi qua điểm M(1; -1).


Câu hỏi:

Đường thẳng nào dưới đây đi qua điểm M(1; -1).

A. \[{d_1}:\left\{ \begin{array}{l}x = 3 + 2t\\y = t\end{array} \right.\];

B. \[{d_2}:\left\{ \begin{array}{l}x = - t\\y = - 2 + 3t\end{array} \right.\];   

C. \[{d_3}:\left\{ \begin{array}{l}x = 3 + t\\y = - 2t\end{array} \right.\];

D. \[{d_4}:\left\{ \begin{array}{l}x = 3t\\y = - 2\end{array} \right.\].

Trả lời:

Đáp án đúng là: A.

Thay tọa độ điểm M lần lượt vào các phương trình đường thẳng, ta thấy:

+) \[{d_1}:\left\{ \begin{array}{l}1 = 3 + 2t\\ - 1 = t\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = - 1\\t = - 1\end{array} \right.\] (luôn đúng). Do đó điểm M thuộc đường thẳng d1.

+) \[{d_2}:\left\{ \begin{array}{l}1 = - t\\ - 1 = - 2 + 3t\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = - 1\\t = \frac{1}{3}\end{array} \right.\](vô lí). Do đó điểm M không thuộc đường thẳng d2.

+) \[{d_3}:\left\{ \begin{array}{l}1 = 3 + t\\ - 1 = - 2t\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = - 2\\t = \frac{1}{2}\end{array} \right.\](vô lí). Do đó điểm M không thuộc đường thẳng d3.

+) \[{d_4}:\left\{ \begin{array}{l}1 = 3t\\ - 1 = - 2\end{array} \right.\](vô lí). Do đó điểm M không thuộc đường thẳng d4.

 Vậy điểm M thuộc vào đường thẳng d1.

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Elip \(\left( E \right):\frac{{{x^2}}}{{16}} + {y^2} = 4\) có tổng độ dài trục lớn và trục bé bằng:

Xem lời giải »


Câu 2:

Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua gốc tọa độ O(0; 0) và điểm M(a; b)?

Xem lời giải »


Câu 3:

Xét vị trí tương đối của hai đường thẳng:

 \[{d_1}\]: x – 2y + 1 = 0 và \[{d_2}\]: – 3x + 6y – 10 = 0

Xem lời giải »


Câu 4:

Viết phương trình tham số của đường thẳng d đi qua điểm M(6; -10) và vuông góc với trục Oy?

Xem lời giải »


Câu 5:

Đường tròn (C) có tâm I (1; -5) và đi qua O (0; 0) có phương trình là:

Xem lời giải »


Câu 6:

Phương trình tiếp tuyến d của đường tròn \[\left( C \right):{\left( {x + 2} \right)^2} + {\left( {y + 2} \right)^2} = 25\] tại trung điểm của A (1; 3) và B (3; -1) là:

Xem lời giải »


Câu 7:

Trong mặt phẳng với hệ tọa độ Oxy, cho điểm \(M\left( {{x_0};{y_0}} \right)\) và đường thẳng \(\Delta \): ax + by + c = 0. Khoảng cách từ điểm M đến \(\Delta \) được tính bằng công thức:

Xem lời giải »


Câu 8:

Khoảng cách từ điểm M(-1; 1) đến đường thẳng \[\Delta \]: 3x – 4y – 3 = 0 bằng:

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2