Đường tròn x^2 + y^2 – 2x + 10y + 1 = 0 đi qua điểm nào trong các điểm sau đây


Câu hỏi:

Đường tròn x2 + y2 – 2x + 10y + 1 = 0 đi qua điểm nào trong các điểm sau đây?

A. A(2; 1);            

B. B(3; −2)         

C. C(4; −1);       

D. D(−1; 3).

Trả lời:

Hướng dẫn giải

Đáp án đúng là: C

+ Xét điểm A(2; 1) ta có: 22 + 12 – 2.2 + 10.1 + 1 = 12 ≠ 0 nên A (C)

+ Xét điểm B(3; −2) ta có: 32 + (−2)2 – 2.3 + 10.(−2) + 1 = −12 ≠ 0 nên B (C)

+ Xét điểm C(4; −1) ta có: 42 + (−1)2 – 2.4 + 10.( −1) + 1 = 0 nên C (C)

+ Xét điểm D(−1; 3) ta có: (−1)2 + 32 – 2.( −1) + 10.3 + 1 = 43 ≠ 0 nên D (C)

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Phương trình nào sau đây không là phương trình đường tròn?

Xem lời giải »


Câu 2:

Phương trình tiếp tuyến d của đường tròn (C): (x + 2)2 + (y + 2)2 = 25 tại điểm M(2; 1) là:

Xem lời giải »


Câu 3:

Cho đường tròn (C) có đường kính AB với A(−2; 1), B(4; 1). Khi đó, phương trình đường tròn (C):

Xem lời giải »


Câu 4:

Cho phương trình x2 + y2 – 2mx – 4(m – 2)y + 6 – m = 0 (1) . Tìm điều kiện của m để (1) là phương trình đường tròn.

Xem lời giải »


Câu 5:

Phương trình đường tròn tâm I(– 2; 1) và tiếp xúc đường thẳng ∆: x – 2y + 7 = 0 là:

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2