Giá trị m để đường thẳng ∆: (m – 1)y + mx – 2 = 0 là tiếp tuyến của đường tròn


Câu hỏi:

Giá trị m để đường thẳng ∆: (m – 1)y + mx – 2 = 0 là tiếp tuyến của đường tròn (C): x2 + y2 – 6x + 5 = 0

A. m = 0 hoặc m = 4;                

B. m = 0 hoặc m = −4;                   

C. m = 1 hoặc m = 3;                    

D. m = 2 hoặc m = −6.

Trả lời:

Hướng dẫn giải

Đáp án đúng là: A

Đường tròn (C) có tâm I(3; 0) và bán kính R =  32+025= 2

Để ∆ là tiếp tuyến của đường tròn (C) thì d(I; ∆) = R

 3m2(m1)2+m2=2

 3m2=2(m1)2+m2

 9m212m+4=4(m22m+1+m2)

 m24m=0

m=0m=4.

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Phương trình nào sau đây không là phương trình đường tròn?

Xem lời giải »


Câu 2:

Đường tròn x2 + y2 – 2x + 10y + 1 = 0 đi qua điểm nào trong các điểm sau đây?

Xem lời giải »


Câu 3:

Phương trình tiếp tuyến d của đường tròn (C): (x + 2)2 + (y + 2)2 = 25 tại điểm M(2; 1) là:

Xem lời giải »


Câu 4:

Cho đường tròn (C) có đường kính AB với A(−2; 1), B(4; 1). Khi đó, phương trình đường tròn (C):

Xem lời giải »


Câu 5:

Cho đường tròn (C): x2 + y2 − (m + 2)x – (m + 4)y + m + 1 = 0. Giá trị của m để đường tròn (C) đi qua điểm A(2; −3)

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2