Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau. Chọn ngẫu nhiên


Câu hỏi:

Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ S. Xác suất chọn được số lớn hơn 2500 là:

A. \(\frac{{13}}{{68}}\);

B. \(\frac{{55}}{{68}}\);

C. \(\frac{{68}}{{81}}\);

D. \(\frac{{13}}{{81}}\).

Trả lời:

Đáp án đúng là: C

Số có 4 chữ số có dạng: \(\overline {abcd} \) (a ≠ 0)

Công đoạn 1, Chọn số a có 9 cách chọn (vì a có thể chọn ngẫu nhiên 1 trong 9 số từ 1 đến 9).

Công đoạn 2, chọn số b có 9 cách chọn (vì b ≠ a mà từ 0 đến 9 có 10 số nhưng b không được chọn lại số mà a đã chọn nên b còn 9 số để chọn).

Công đoạn 3, chọn số c có 8 cách chọn (vì c ≠ a, c ≠ b mà từ 0 đến 9 có 10 số nhưng c không được chọn lại số mà a và b đã chọn nên c còn 8 số để chọn).

Công đoạn 4, chọn số d có 7 cách chọn (vì d ≠ a, d ≠ b, d ≠ c mà từ 0 đến 9 có 10 số nhưng d không được chọn lại số mà a, b và c đã chọn nên d còn 7 số để chọn).

Số phần tử của không gian mẫu: n(S) = 9.9.8.7 = 4536.

Gọi A: “ tập hợp các số tự nhiên có 4 chữ số phân biệt và lớn hơn 2500” ta có các trường hợp sau:

Trường hợp 1, a > 2

Chọn a: có 7 cách chọn (vì a có thể chọn ngẫu nhiên 1 trong 7 số từ 3 đến 9).

Chọn b: có 9 cách chọn (vì b ≠ a mà từ 0 đến 9 có 10 số nhưng b không được chọn lại số mà a đã chọn nên b còn 9 số để chọn).

Chọn c: có 8 cách chọn (vì c ≠ a, c ≠ b mà từ 0 đến 9 có 10 số nhưng c không được chọn lại số mà a và b đã chọn nên c còn 8 số để chọn).

Chọn d: có 7 cách chọn (vì d ≠ a, d ≠ b, d ≠ c mà từ 0 đến 9 có 10 số nhưng d không được chọn lại số mà a, b và c đã chọn nên d còn 7 số để chọn).

Vậy trường hợp này có: 7.9.8.7 = 3528 (số).

Trường hợp 2, a = 2 và b > 5.

Chọn a: có 1 cách chọn (vì a = 2).

Chọn b: có 4 cách chọn (vì b có thể chọn 1 trong 4 số từ 6 đến 9).

Chọn c: có 8 cách chọn (vì c ≠ a, c ≠ b mà từ 0 đến 9 có 10 số nhưng c không được chọn lại số mà a và b đã chọn nên c còn 8 số để chọn).

Chọn d: có 7 cách chọn (vì d ≠ a, d ≠ b, d ≠ c mà từ 0 đến 9 có 10 số nhưng d không được chọn lại số mà a, b và c đã chọn nên d còn 7 số để chọn).

Vậy trường hợp này có: 1.4.8.7 = 224 (số).

Trường hợp 3, a = 2, b = 5 và c > 0

Chọn a: có 1 cách chọn (vì a = 2).

Chọn b: có 1 cách chọn (vì b = 5).

Chọn c: có 7 cách chọn (vì c ≠ a, c ≠ b mà c > 0 nên c có thể chọn một trong các số từ 1 đến 9 có 9 số nhưng c không được chọn lại số mà a và b đã chọn nên c còn 7 số để chọn).

Chọn d: có 7 cách chọn (vì d ≠ a, d ≠ b, d ≠ c mà từ 0 đến 9 có 10 số nhưng d không được chọn lại số mà a, b và c đã chọn nên d còn 7 số để chọn).

Vậy trường hợp này có: 1.1.7.7 = 49 (số).

Trường hợp 4, a = 2; b = 5; c = 0; d > 0

Chọn a: có 1 cách chọn (vì a = 2).

Chọn b: có 1 cách chọn (vì b = 5).

Chọn c: có 1 cách chọn (vì c = 0).

Chọn d: có 7 cách chọn (vì d ≠ a, d ≠ b, d ≠ c mà từ 0 đến 9 có 10 số nhưng d không được chọn lại số mà a, b và c đã chọn nên d còn 7 số để chọn).

Vậy trường hợp này có: 1.1.1.7 = 7 (số).

Như vậy số phần tử của biến cố A là n(A) = 3528 + 224 + 49 + 7 = 3808.

Suy ra xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( S \right)}} = \frac{{3808}}{{4536}} = \frac{{68}}{{81}}\).

Em nghĩ bài toán này nếu giải theo kiểu phần bù thì sẽ ngắn hơn nhiều ạ.

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Gieo một đồng tiền liên tiếp 3 lần thì số phần tử của không gian mẫu n(Ω) là

Xem lời giải »


Câu 2:

Gieo một con xúc xắc cân đối đồng chất 2 lần. Số phần tử của không gian mẫu là?

Xem lời giải »


Câu 3:

Rút một lá bài từ bộ bài gồm 52 lá. Xác suất để được lá bích là

Xem lời giải »


Câu 4:

Gieo một đồng xu và một con xúc xắc cân đối đồng chất một lần. Số phần tử của không gian mẫu là:

Xem lời giải »


Câu 5:

Có 2 học sinh nam và 6 học sinh nữ, xếp thành một hàng ngang một cách ngẫu nhiên. Xác định số phần tử của biến cố A “Hai học sinh nam luôn đứng cạnh nhau”

Xem lời giải »


Câu 6:

Một người bỏ ngẫu nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Xác suất để có ít nhất một lá thư được bỏ đúng phong bì là:

Xem lời giải »


Câu 7:

Một quân vua được đặt trên một ô giữa bàn cờ vua. Mỗi bước di chuyển, quân vua được chuyển sang một ô khác chung cạnh hoặc chung đỉnh với ô đang đứng. Bạn An di chuyển quân vua ngẫu nhiên 3 bước. Tính xác suất sau 3 bước quân vua trở về ô xuất phát.

Một quân vua được đặt trên một ô giữa bàn cờ vua. Mỗi bước di chuyển, (ảnh 1)

Xem lời giải »


Câu 8:

Gieo một đồng xu cân đối và đồng chất ba lần. Tính xác suất của biến cố A: “Kết quả của 3 lần gieo là như nhau”

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2