Hàm số y = (x - 2) / căn bậc hai (x^2 - 3) - 2 có tập xác định là:


Câu hỏi:

Hàm số \(y = \frac{{x - 2}}{{\sqrt {{x^2} - 3} - 2}}\) có tập xác định là:

A. \(\left( { - \infty ; - \sqrt 3 } \right) \cup \left( {\sqrt 3 ; + \infty } \right)\);

B. \(\left( { - \infty ; - \sqrt 3 } \right] \cup \left[ {\sqrt 3 ; + \infty } \right)\backslash \left\{ {\sqrt 7 } \right\}\);

C. \(\left( { - \infty ; - \sqrt 3 } \right) \cup \left( {\sqrt 3 ; + \infty } \right)\backslash \left\{ {\sqrt 7 ; - \sqrt 7 } \right\}\);

D. \(\left( { - \infty ; - \sqrt 3 } \right) \cup \left( {\sqrt 3 ;\frac{7}{4}} \right)\).

Trả lời:

Đáp án đúng là: B.

Hàm số đã cho xác định khi \(\left\{ \begin{array}{l}\sqrt {{x^2} - 3} - 2 \ne 0\\{x^2} - 3 \ge 0\end{array} \right.\)

Ta có \({x^2} - 3 \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \ge \sqrt 3 \\x \le - \sqrt 3 \end{array} \right.\).

Xét \(\sqrt {{x^2} - 3} - 2 \ne 0\)

\( \Leftrightarrow \sqrt {{x^2} - 3} \ne 2\)

x2 – 3 ≠ 4

x2 ≠ 7

\( \Leftrightarrow \left\{ \begin{array}{l}x \ne \sqrt 7 \\x \ne - \sqrt 7 \end{array} \right.\)

Do đó tập xác định của hàm số đã cho là \(D = \left( { - \infty ; - \sqrt 3 } \right] \cup \left[ {\sqrt 3 ; + \infty } \right)\backslash \left\{ {\sqrt 7 ; - \sqrt 7 } \right\}\).

Vậy đáp án đúng là: B

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Tập xác định của hàm số \(y = \sqrt {{x^2} - 3x - 4} \) là:

Xem lời giải »


Câu 2:

Tìm tập xác định D của hàm số \[y = \frac{{3x - 1}}{{2x - 2}}\].

Xem lời giải »


Câu 3:

Cho hàm số f(x) = 4 – 3x. Khẳng định nào sau đây đúng?

Xem lời giải »


Câu 4:

Cho hàm số: \(y = \frac{{x - 1}}{{2{x^2} - 3x + 1}}\). Trong các điểm sau đây, điểm nào thuộc đồ thị hàm số:

Xem lời giải »


Câu 5:

Tìm m để hàm số \[y = \frac{{x\sqrt 2 + 1}}{{{x^2} + 2{\rm{x}} - m + 1}}\] có tập xác định là.

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2