Khoảng cách từ điểm M(0; 3) đến đường thẳng ∆: xcos alpha+ ysin alpha + 3(2 – sin alpha) = 0 bằng


Câu hỏi:

Khoảng cách từ điểm M(0; 3) đến đường thẳng ∆: xcosα + ysinα + 3(2 – sinα) = 0 bằng

A. 6;                 

B.  6; 

C. 3sinα;            

D. 3cosα+sinα.

Trả lời:

Hướng dẫn giải

Đáp án đúng là: B

Khoảng cách từ điểm M đến đường thẳng ∆ là:

d(M; ∆) = 3cosα+ 0.sinα+ 3(2  sinα)cos2α+sin2α 0.cosα+ 3.sinα+ 3(2  sinα)cos2α+sin2α

 3sinα+ 6  3sinαcos2α+sin2α

=6cos2α+sin2α=6

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Tìm khoảng cách từ điểm M(1; 2) đến đường thẳng m: 4x + 3y – 2 = 0

Xem lời giải »


Câu 2:

Góc tạo bởi hai đường thẳng d1: 2x – y – 10 = 0 và d2: x − 3y + 9 = 0

Xem lời giải »


Câu 3:

Tìm toạ độ giao điểm của hai đường thẳng 7x – 3y + 16 = 0 và x + 10 = 0

Xem lời giải »


Câu 4:

Cho tam giác ABC có A(2; -1); B(2; -2) và C(0; -1). Độ dài đường cao kẻ từ A của tam giác ABC:

Xem lời giải »


Câu 5:

Cho 4 điểm A(4; – 3) ; B(5; 1), C(2; 3) và D(– 2; 2). Xác định vị trí tương đối của hai đường thẳng AB và CD:

Xem lời giải »


Câu 6:

Tính góc tạo bởi hai đường thẳng d1 : 6x – 5y + 15 = 0 và d2 :x=106ty=1+5t

Xem lời giải »


Câu 7:

Khoảng cách giữa hai đường thẳng m: 6x – 8y + 3 = 0 và đường thẳng n: 3x – 4y – 6 = 0 bằng:

Xem lời giải »


Câu 8:

Khoảng cách từ giao điểm của hai đường thẳng d1: x – 3y + 4 = 0 và d2 : 2x +3y - 1 = 0 đến đường thẳng ∆: 3x + y + 4 = 0 bằng

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2