Số dân của một tình ở thời điểm hiện tại là khoảng 800 nghìn người. Giả sử rằng tỉ lệ tăng dân số hằng năm của tỉnh đó là r%. a) Viết công thức tính số dân của tỉnh đó sau 1 năm, sau 2 năm.
Câu hỏi:
Số dân của một tỉnh ở thời điểm hiện tại là khoảng 800 nghìn người. Giả sử rằng tỉ lệ tăng dân số hằng năm của tỉnh đó là r%.
a) Viết công thức tính số dân của tỉnh đó sau 1 năm, sau 2 năm. Từ đó suy ra công thức tính số dân của tỉnh đó sau 5 năm nữa là \(P = 800{\left( {1 + \frac{r}{{100}}} \right)^5}\) (nghìn người).
b) Với r = 1,5, dùng hai số hạng đầu trong khai triển của (1 + 0,015)5, hãy ước tính số dân của tỉnh đó sau 5 năm nữa (theo đơn vị nghìn người).
Trả lời:
Hướng dẫn giải
a) Để tính số dân năm sau, ta lấy số dân năm trước cộng với số dân tăng hằng năm (Số dân tăng hằng năm là r% của số dân năm trước).
Số dân của tỉnh đó sau 1 năm là:
\({P_1} = 800 + 800.r\% = 800\left( {1 + r\% } \right) = 800{\left( {1 + \frac{r}{{100}}} \right)^1}\) (nghìn người).
Số dân của tỉnh đó sau 2 năm là:
\({P_2} = {P_1} + {P_1}.r\% \)\( = 800{\left( {1 + \frac{r}{{100}}} \right)^1} + 800{\left( {1 + \frac{r}{{100}}} \right)^1}.\frac{r}{{100}}\)\( = 800{\left( {1 + \frac{r}{{100}}} \right)^1}\left( {1 + \frac{r}{{100}}} \right) = 800{\left( {1 + \frac{r}{{100}}} \right)^2}\) (nghìn người).
Do đó, công thức tính số dân của tỉnh đó sau 5 năm nữa là: \({P_5} = 800{\left( {1 + \frac{r}{{100}}} \right)^5}\) (nghìn người).
b) Với r = 1,5, suy ra \(\frac{r}{{100}} = \frac{{1,5}}{{100}} = 0,015\).
Ta có khai triển:
(1 + 0,015)5 = 15 + 5 . 14 . 0,015 + 10 . 13 . (0,015)2 + 10 . 12 . (0,015)3 + 5 . 1 . (0,015)4 + (0,015)5.
Do đó: (1 + 0,015)5 ≈ 15 + 5 . 14 . 0,015 = 1,075.
Số dân của tỉnh đó sau 5 năm nữa là:
P5 = 800 . (1 + 0,015)5 ≈ 800 . 1,075 = 860 (nghìn người)
Vậy số dân của tỉnh đó sau 5 năm nữa xấp xỉ khoảng 860 nghìn người.