Bài 4 trang 100 Toán 11 Tập 1 Cánh diều


Cho tứ diện ABCD. Gọi G, G lần lượt là trọng tâm của các tam giác ABC, ABD. Chứng minh rằng đường thẳng GG song song với đường thẳng CD.

Giải Toán 11 Bài 2: Hai đường thẳng song song trong không gian - Cánh diều

Bài 4 trang 100 Toán 11 Tập 1: Cho tứ diện ABCD. Gọi G1, G2 lần lượt là trọng tâm của các tam giác ABC, ABD. Chứng minh rằng đường thẳng G1G2 song song với đường thẳng CD.

Lời giải:

Bài 4 trang 100 Toán 11 Tập 1 | Cánh diều Giải Toán 11

+) Trong mặt phẳng ABC, kẻ đường trung tuyến AM (M ∈ BC).

Do G1 là trọng tâm của tam giác ABC nên AG1AM=23 .

+) Trong mặt phẳng ABD, kẻ đường trung tuyến AN (N ∈ BD).

Do G2 là trọng tâm của tam giác ABD nen AG2AN=23 .

+) Xét tam giác AMN, có AG1AM=AG2AN=23 nên G1G2 // MN (định lí Thalès đảo).

+) Xét tam giác BCD, có: M, N lần lượt là trung điểm của BC, BD

Do đó MN là đường trung bình của tam giác BCD.

Suy ra MN // CD.

Mà G1G2 // MN (chứng minh trên) nên G1G2 // CD.

Lời giải bài tập Toán 11 Bài 2: Hai đường thẳng song song trong không gian hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác: