Bài 7 trang 100 Toán 11 Tập 1 Cánh diều
Cho tứ diện ABCD. Gọi I, J lần lượt là trung điểm của các cạnh BC, CD. Trên cạnh AC lấy điểm K. Gọi M là giao điểm của BK và AI, N là giao điểm của DK và AJ. Chứng minh rằng đường thẳng MN song song với đường thẳng BD.
Giải Toán 11 Bài 2: Hai đường thẳng song song trong không gian - Cánh diều
Bài 7 trang 100 Toán 11 Tập 1: Cho tứ diện ABCD. Gọi I, J lần lượt là trung điểm của các cạnh BC, CD. Trên cạnh AC lấy điểm K. Gọi M là giao điểm của BK và AI, N là giao điểm của DK và AJ. Chứng minh rằng đường thẳng MN song song với đường thẳng BD.
Lời giải:
• Ta có: B ∈ (BDK) và B ∈ (BCD) nên B là giao điểm của (BDK) và (BCD).
D ∈ (BDK) và D ∈ (BCD) nên D là giao điểm của (BDK) và (BCD).
Do đó (BDK) ∩ (BCD) = BD.
• Ta có: M ∈ BK mà BK ⊂ (BDK) nên M ∈ (BDK);
M ∈ AI mà AI ⊂ (AIJ) nên M ∈ (AIIJ)
Do đó M là giao điểm của (BDK) và (AIJ)
Tương tự ta cũng có N là giao điểm của (BDK) và (AIJ)
Suy ra (BDK) ∩ (AIJ) = MN.
• Ta có: I ∈ BC mà BC ⊂ (BCD) nên I ∈ (BCD)
Lại có I ∈ (AIJ) nên I là giao điểm của (BCD) và (AIJ)
Tương tự ta cũng có J là giao điểm của (BCD) và (AIJ)
Suy ra (BCD) ∩ (AIJ) = IJ.
• Xét DBCD có I, J lần lượt là trung điểm của BC, CD nên IJ là đường trung bình của tam giác
Do đó IJ // BD.
• Ta có: (BDK) ∩ (BCD) = BD;
(BDK) ∩ (AIJ) = MN;
(BCD) ∩ (AIJ) = IJ;
IJ // BD.
Suy ra MN // BD.
Lời giải bài tập Toán 11 Bài 2: Hai đường thẳng song song trong không gian hay, chi tiết khác:
Câu hỏi khởi động trang 95 Toán 11 Tập 1: Trong thực tế, ta quan sát thấy nhiều hình ảnh gợi nên những đường thẳng song song với nhau ....
Hoạt động 1 trang 95 Toán 11 Tập 1: a) Hãy nêu các vị trí tương đối của hai đường thẳng trong mặt phẳng.....
Luyện tập 1 trang 97 Toán 11 Tập 1: Quan sát một phần căn phòng (Hình 35), hãy cho biết vị trí tương đối của các cặp đường thẳng a và b; a và c; b và c. ....
Hoạt động 2 trang 97 Toán 11 Tập 1: Trong không gian, cho điểm M và đường thẳng d không đi qua điểm M (Hình 36). Nêu dự đoán về số đường thẳng đi qua điểm M và song song với đường thẳng d. ....
Hoạt động 3 trang 97 Toán 11 Tập 1: Cho ba mặt phẳng (P), (Q), (R) đôi một cắt nhau theo ba giao tuyến phân biệt a, b, c, trong đó a = (P) ∩ (R), b = (Q) ∩ (R), c = (P) ∩ (Q). ...
Luyện tập 2 trang 99 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy là hình bình hành. Xác định giao tuyến của các cặp mặt phẳng (SAB) và (SCD); (SAD) và (SBC). ....
Hoạt động 4 trang 99 Toán 11 Tập 1: Trong mặt phẳng, hãy nêu vị trí tương đối của hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba....
Luyện tập 3 trang 100 Toán 11 Tập 1: Cho hình chóp S.ABC. Gọi M, N lần lượt là trung điểm của các đoạn thẳng SA, SC. ...
Bài 1 trang 100 Toán 11 Tập 1: Quan sát phòng học của lớp và nêu lên hình ảnh của hai đường thẳng song song, cắt nhau và chéo nhau. ....
Bài 2 trang 100 Toán 11 Tập 1: Quan sát Hình 43 và cho biết vị trí tương đối của hai trong ba cột tuabin gió có trong hình.....
Bài 3 trang 100 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là trung điểm của các cạnh SA, AB, SD....
Bài 4 trang 100 Toán 11 Tập 1: Cho tứ diện ABCD. Gọi G1, G2 lần lượt là trọng tâm của các tam giác ABC, ABD. Chứng minh rằng đường thẳng G1G2 song song với đường thẳng CD. ....
Bài 5 trang 100 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB là đáy lớn và AB = 2CD. Gọi M, N lần lượt là trung điểm của các cạnh SA và SB....
Bài 6 trang 100 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA....