Bài 4 trang 74 Toán 11 Tập 2 Chân trời sáng tạo


Cho hình hộp ABCD.A′B′C′D′ có đáy là hình thoi. Cho biết AB = BD = a, A′C = 2a.

Giải Toán 11 Bài 3: Hai mặt phẳng vuông góc - Chân trời sáng tạo

Bài 4 trang 74 Toán 11 Tập 2: Cho hình hộp ABCD.A′B′C′D′ có đáy là hình thoi. Cho biết AB = BD = a, A′C = 2a.

a) Tính độ dài đoạn thẳng AA′.

b) Tính tổng diện tích các mặt của hình hộp.

Lời giải:

Bài 4 trang 74 Toán 11 Tập 2 Chân trời sáng tạo

a) Xét tam giác ABD có: AB = AD = BD = a nên ΔABD đều

BAD^=60°

ABC^=180°BAD^=120°

Xét tam giác ABC có: AC=AB2+BC22.AB.BC.cosBAC^=a3

AA′ ⊥ (ABCD) ⇒ AA′ ⊥ AC ⇒ ΔAA′C vuông tại A.

AA'=A'C'2AC2=a

Vậy độ dài đoạn thẳng AA′ là: AA'=a

b) Ta có:

SABCD=SA'B'C'D'=AB.AC.sinBAC^=a232 ;

SABB'A'=SCDD'C'=AB.AA'=a2 ;

SADD'A'=SBCC'B'=AD.AA'=a2.

Tổng diện tích các mặt của hình hộp là:

S=SABCD+SA'B'C'D'+SABB'A'+SADD'A'+SBCC'B'+SCDD'C'=4+3a2.

Vậy tổng diện tích các mặt của hình hộp là 4+3a2.

Lời giải bài tập Toán 11 Bài 3: Hai mặt phẳng vuông góc hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác: