Bài 7 trang 25 Toán 11 Tập 2 Chân trời sáng tạo


Công thức là mô hình đơn giản cho phép tính độ cao h so với mặt nước biển của một vị trí trong không trung (tính bằng kilômét) theo áp suất không khí P tại điểm đó và áp suất P của không khí tại mặt nước biển (cùng tính bằng Pa – đơn vị áp suất, đọc là Pascal).

Giải Toán 11 Bài 3: Hàm số mũ. Hàm số lôgarit - Chân trời sáng tạo

Bài 7 trang 25 Toán 11 Tập 2: Công thức h=19,4. logPP0 là mô hình đơn giản cho phép tính độ cao h so với mặt nước biển của một vị trí trong không trung (tính bằng kilômét) theo áp suất không khí P tại điểm đó và áp suất P0 của không khí tại mặt nước biển (cùng tính bằng Pa – đơn vị áp suất, đọc là Pascal).

(Nguồn: https://doi.org/10.1007/s40828-020-0111-6)

a) Nếu áp suất không khí ngoài máy bay bằng 12P0 thì máy bay đang ở độ cao nào?

b) Áp suất không khí tại đỉnh của ngọn núi A bằng 45 lần áp suất không khí tại đỉnh của ngọn núi B. Ngọn núi nào cao hơn và cao hơn bao nhiêu kilômét? (Làm tròn kết quả đến hàng phần mười.)

Lời giải:

a) Độ cao của máy bay khi áp suất không khí ngoài máy bay bằng 12P0 là:

h=19,4. logPP0=19,4. log12P0P0=19,4. log125,84 (km)

Vậy nếu áp suất không khí ngoài máy bay bằng 12P0 thì máy bay đang ở độ cao khoảng 5,84 m.

b) Độ cao của ngọn núi A là: hA=19,4. logPAP0.

Độ cao của ngọn núi B là: hB=19,4. logPBP0.

Áp suất không khí tại đỉnh của ngọn núi A bằng 45 lần áp suất không khí tại đỉnh của ngọn núi B nên ta có: PA=45PBPAPB=45.

Ta có hAhB=19,4. logPAP019,4. logPBP0

                     =19,4. logPAP0+19,4. logPBP0

                     =19,4. logPAP0:PBP0=19,4. logPAPB

                     =19,4. log451,88 (km).

Vậy ngọn núi A cao hơn và cao hơn khoảng 1,88 km.

Lời giải bài tập Toán 11 Bài 3: Hàm số mũ. Hàm số lôgarit hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác: