X

Toán 11 Chân trời sáng tạo

Giải Toán 11 trang 75 Tập 1 Chân trời sáng tạo


Haylamdo biên soạn và sưu tầm với Giải Toán 11 trang 75 Tập 1 trong Bài 2: Giới hạn của hàm số Toán lớp 11 Tập 1 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11 trang 75.

Giải Toán 11 trang 75 Tập 1 Chân trời sáng tạo

Thực hành 3 trang 75 Toán 11 Tập 1: Cho hàm số Thực hành 3 trang 75 Toán 11 Tập 1 Chân trời sáng tạo

Tìm các giới hạn limx1+fx,limx1fxlimx1fx (nếu có).

Lời giải:

+) Với dãy số (xn) bất kì, xn ≤ – 1 và xn → – 1. Khi đó f(xn) = 1 – 2xn nên limf(xn) = lim(1 – 2xn) = 3.

Vì vậy limx1fx=3.

+) Với dãy số (xn) bất kì, xn > – 1 và xn → – 1. Khi đó f(xn) = xn2+2 nên limf(xn) = lim(xn2+2) = 3.

Vì vậy limx1+fx=3.

limx1+fx=limx1fx=3 nên limx1fx=3.

Hoạt động khám phá 4 trang 75 Toán 11 Tập 1: Cho hàm số fx=1x có đồ thị như Hình 3.

Hoạt động khám phá 4 trang 75 Toán 11 Tập 1 Chân trời sáng tạo

a) Tìm các giá trị còn thiếu trong bảng sau:

x

10

100

1 000

10 000

100 000

y = f(x)

0,1

0,01

?

?

?

Từ đồ thị và bảng trên, nêu nhận xét về giá trị f(x) khi x càng lớn (dần tới +∞)?

b) Tìm các giá trị còn thiếu trong bảng sau:

x

– 100 000

– 10 000

– 1 000

– 100

– 10

y = f(x)

?

?

?

–0,01

–0,1

Từ đồ thị và bảng trên, nêu nhận xét về giá trị f(x) khi x càng bé (dần tới – ∞)?

Lời giải:

a) Với x = 1 000 suy ra y=11000=0,001;

Với x = 10 000 suy ra y=110 000=0,0001;

Với x = 100 000 suy ra y=1100 000=0,00001.

Từ đó ta có bảng sau:

x

10

100

1 000

10 000

100 000

y = f(x)

0,1

0,01

0,001

0,0001

0,00001

b) Với x = – 100 000 suy ra y=1100 000=0,00001;

Với x = – 10 000 suy ra y=110 000=0,0001;

Với x = – 1 000 suy ra y=11000=0,001.

Từ đó ta có bảng sau:

x

– 100 000

– 10 000

– 1 000

– 100

– 10

y = f(x)

–0,00001

–0,0001

–0,001

–0,01

–0,1

Lời giải bài tập Toán 11 Bài 2: Giới hạn của hàm số Chân trời sáng tạo hay khác:

Xem thêm lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác: