b) Tam giác ABC' là tam giác gì? Tính khoảng cách từ A đến BC'.


Câu hỏi:

b) Tam giác ABC' là tam giác gì? Tính khoảng cách từ A đến BC'.

Trả lời:

b) Vì tam giác ABC vuông cân tại A nên AB ^ AC.

Vì AA' ^ (ABC) nên AA' ^ AB mà AB ^ AC nên AB ^ (ACC'A'), suy ra AB ^ AC'.

Do đó tam giác ABC' là tam giác vuông tại A.

Hạ AK ^ BC' tại K. Khi đó d(A, BC') = AK.

Vì ACC'A' là hình chữ nhật nên AC'2=AA'2+A'C'2=h2+a2 .

Xét tam giác ABC' vuông tại A, AK là đường cao, ta có:

1AK2=1AB2+1AC'2=1a2+1a2+h2=2a2+h2a2a2+h2.

AK2=a2a2+h22a2+h2AK=aa2+h22a2+h2

Vậy khoảng cách từ A đến BC' bằng aa2+h22a2+h2  .

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:

Câu 1:

a) Cho điểm M và đường thẳng a. Gọi H là hình chiếu của M trên a. Với mỗi điểm K thuộc a, giải thích vì sao MK ³ MH (H.7.74).

a) Cho điểm M và đường thẳng a. Gọi H là hình chiếu của M trên a. Với mỗi điểm K thuộc a, giải thích vì sao MK  MH (H.7.74). (ảnh 1)

Xem lời giải »


Câu 2:

b) Cho điểm M và mặt phẳng (P). Gọi H là hình chiếu của M lên (P). Với mỗi điểm K thuộc (P), giải thích vì sao MK ³ MH (H7.75).

Xem lời giải »


Câu 3:

Cho hình lăng trụ đứng ABC.A'B'C' có ABC là tam giác vuông cân tại A, AB = a, AA' = h (H.7.77).

a) Tính khoảng cách từ A đến mặt phẳng (BCC'B').

Cho hình lăng trụ đứng ABC.A'B'C' có ABC là tam giác vuông cân tại A, AB = a, AA' = h (H.7.77). a) Tính khoảng cách từ A đến mặt phẳng (BCC'B'). (ảnh 1)

Xem lời giải »


Câu 4:

Cho đường thẳng a song song với mặt phẳng (P). Lấy hai điểm M; N bất kỳ thuộc a và gọi A; B tương ứng là các hình chiếu của chúng trên (P) (H.7.78).

Giải thích vì sao ABNM là một hình chữ nhật và M, N có cùng khoảng cách đến (P).

Cho đường thẳng a song song với mặt phẳng (P). Lấy hai điểm M; N bất kỳ thuộc a và gọi A; B tương ứng là các hình chiếu của chúng trên (P) (H.7.78).  Giải thích vì sao ABNM là một hình chữ nhật và M, N có cùng khoảng cách đến (P). (ảnh 1)

Xem lời giải »


Câu 5:

a) Cho hai đường thẳng m và n song song với nhau. Khi một điểm M thay đổi trên m thì khoảng cách từ nó đến đường thẳng n có thay đổi hay không?

b) Cho hai mặt phẳng song song (P) và (Q) và một điểm M thay đổi trên (P) (H.7.79). Hỏi khoảng cách từ M đến (Q) thay đổi thế nào khi M thay đổi.

a) Cho hai đường thẳng m và n song song với nhau. Khi một điểm M thay đổi trên m thì khoảng cách từ nó đến đường thẳng n có thay đổi hay không? (ảnh 1)

Xem lời giải »


Câu 6:

Nếu đường thẳng a thuộc mặt phẳng (P) và mặt phẳng (Q) song song với (P) thì giữa d(a, (Q)) và d((P), (Q)) có mối quan hệ gì?

Xem lời giải »


Câu 7:

Cho hình chóp S.ABC có SA ^ (ABC), SA = h. Gọi M, N, P tương ứng là trung điểm của SA, SB, SC.

a) Tính d((MNP), (ABC)) và d(NP, (ABC)).

Cho hình chóp S.ABC có SA  (ABC), SA = h. Gọi M, N, P tương ứng là trung điểm của SA, SB, SC. a) Tính d((MNP), (ABC)) và d(NP, (ABC)). b) Giả sử tam giác ABC vuông tại B và AB = a. Tính d(A, (SBC)). (ảnh 1)

Xem lời giải »