Bài 2.4 trang 46 Toán 11 Tập 1 - Kết nối tri thức
Trong các dãy số (u) sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?
Giải Toán 11 Bài 5: Dãy số - Kết nối tri thức
Bài 2.4 trang 46 Toán 11 Tập 1: Trong các dãy số (un) sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?
a) un = n – 1;
b) ;
c) un = sin n;
d) un = (– 1)n – 1 n2.
Lời giải:
a) Ta có: un = n – 1 ≥ 0 với mọi n ∈ ℕ*.
Do đó, dãy số (un) bị chặn dưới với mọi n ∈ ℕ*.
Dãy số (un) không bị chặn trên vì không có số M nào thỏa mãn:
un = n – 1 ≤ M với mọi n ∈ ℕ*.
Vậy dãy số (un) bị chặn dưới và không bị chặn trên nên không bị chặn.
b) Ta có: , với mọi n ∈ ℕ*.
Vì , ∀ n ∈ ℕ* nên ∀ n ∈ ℕ*.
Suy ra hay ∀ n ∈ ℕ*.
Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.
c) Ta có: – 1 ≤ sin n ≤ 1 với mọi n ∈ ℕ*.
Do đó, – 1 ≤ un ≤ 1 với mọi n ∈ ℕ*.
Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.
d) un = (– 1)n – 1 n2
Ta có: (– 1)n – 1 = 1 với mọi n ∈ ℕ* và n lẻ.
(– 1)n – 1 = – 1 với mọi n ∈ ℕ* và n chẵn.
n2 ≥ 0 với mọi n ∈ ℕ*.
Do đó, – 1 . n2 ≤ (– 1)n – 1 n2 ≤ 1 . n2 hay – n2 ≤ un ≤ n2 với mọi n ∈ ℕ*.
Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.
Lời giải bài tập Toán 11 Bài 5: Dãy số hay, chi tiết khác:
HĐ1 trang 42 Toán 11 Tập 1: Viết năm số chính phương đầu theo thứ tự tăng dần ....
HĐ3 trang 43 Toán 11 Tập 1: Xét dãy số (un) gồm tất cả các số nguyên dương chia hết cho 5....
HĐ4 trang 45 Toán 11 Tập 1: a) Xét dãy số (un) với un = 3n – 1. Tính un + 1 và so sánh với un. ....
Luyện tập 3 trang 45 Toán 11 Tập 1: Xét tính tăng, giảm của dãy số (un), với ....
Luyện tập 4 trang 46 Toán 11 Tập 1: Xét tính bị chặn của dãy số (un), với un = 2n – 1 ....