Bài 4.41 trang 103 Toán 11 Tập 1 - Kết nối tri thức
Cho hình chóp S.ABCD có đáy ABCD là hình thang, AB // CD và AB < CD. Xác định giao tuyến của hai mặt phẳng sau:
Giải Toán 11 Bài tập cuối chương 4 - Kết nối tri thức
Bài 4.41 trang 103 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình thang, AB // CD và AB < CD. Xác định giao tuyến của hai mặt phẳng sau:
a) (SAD) và (SBC);
b) (SAB) và (SCD);
c) (SAC) và (SBD).
Lời giải:
a) Ta có: ABCD là hình thang có hai đáy AB và CD. Trong mặt phẳng (ABCD), gọi F là giao điểm của AD và BC. Khi đó F thuộc AD nên F thuộc mặt phẳng (SAD), F thuộc BC nên F thuộc mặt phẳng (SBC), vậy F là một điểm chung của hai mặt phẳng (SAD) và (SBC).
Lại có S là một điểm chung khác của hai mặt phẳng (SAD) và (SBC).
Do vây, SF là giao tuyến của hai mặt phẳng (SAD) và (SBC).
b) Hai mặt phẳng (SAB) và (SCD) lần lượt chứa hai đường thẳng AB và CD song song với nhau. Khi đó giao tuyến của hai mặt phẳng này là đường thẳng đi qua điểm chung S và song song với AB, CD.
Qua S, vẽ đường thẳng d song song với AB, CD.
Vậy d là giao tuyến của hai mặt phẳng (SAB) và (SCD).
c) Trong mặt phẳng (ABCD), gọi E là giao điểm của AC và BD. Vì E thuộc AC nên E thuộc mặt phẳng (SAC), vì E thuộc BD nên E thuộc mặt phẳng (SBD). Do vậy, E là một điểm chung của hai mặt phẳng (SAC) và (SBD).
Lại có S là một điểm chung khác của hai mặt phẳng (SAC) và (SBD).
Vậy SE là giao tuyến của hai mặt phẳng (SAC) và (SBD).
Lời giải bài tập Toán 11 Bài tập cuối chương 4 hay, chi tiết khác:
Bài 4.35 trang 102 Toán 11 Tập 1: Cho đường thẳng a song song với mặt phẳng (P) ....
Bài 4.38 trang 102 Toán 11 Tập 1: Cho ba mặt phẳng (P), (Q), (R) đôi một song song với nhau ....