Giải thích tại sao các hàm số sau đây gián đoạn tại điểm đã cho. a) f( x ) = 1/xn^e 'u, x khác 0; 1, n^e 'u; x = 0. tại điểm x = 0; b) g( x ) = 1 + x; n^e 'u, x < 1; 2 - x n^e 'u, x lớn hơn
Câu hỏi:
Giải thích tại sao các hàm số sau đây gián đoạn tại điểm đã cho.
a) \(f\left( x \right) = \left\{ \begin{array}{l}\frac{1}{x}\,\,\,n\^e 'u\,\,x \ne 0\\1\,\,\,\,\,\,n\^e 'u\,\,x = 0\end{array} \right.\) tại điểm x = 0;
b) \(g\left( x \right) = \left\{ \begin{array}{l}1 + x\,\,\,n\^e 'u\,\,x < 1\\2 - x\,\,\,n\^e 'u\,\,x \ge 1\end{array} \right.\) tại điểm x = 1.
Trả lời:
Lời giải:
a) Với x ≠ 0, thì \(f\left( x \right) = \frac{1}{x}\), ta có: \(\mathop {\lim }\limits_{x \to {0^ - }} \frac{1}{x} = - \infty \) và \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{x} = + \infty \).
Suy ra \(\mathop {\lim }\limits_{x \to {0^ - }} \frac{1}{x} \ne \mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{x}\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 0} \frac{1}{x}\).
Vậy hàm số đã cho gián đoạn tại x = 0.
b) Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right)\)\( = \mathop {\lim }\limits_{x \to {1^ + }} \left( {2 - x} \right) = 2 - 1 = 1\);
\(\mathop {\lim }\limits_{x \to {1^ - }} g\left( x \right)\)\( = \mathop {\lim }\limits_{x \to {1^ - }} \left( {1 + x} \right) = 1 + 1 = 2\).
Suy ra \(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} g\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 1} g\left( x \right)\).
Vậy hàm số đã cho gian đoạn tại x = 1.
Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:
Câu 1:
Cho dãy số (un) với \({u_n} = \sqrt {{n^2} + 1} - \sqrt n \). Mệnh đề đúng là
A. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = - \infty \).
B. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 1\).
C. \[\mathop {\lim }\limits_{n \to + \infty } {u_n} = + \infty \].
D. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 0\).
Xem lời giải »
Câu 2:
Cho \({u_n} = \frac{{2 + {2^2} + ... + {2^n}}}{{{2^n}}}\). Giới hạn của dãy số (un) bằng
A. 1.
B. 2.
C. – 1.
D. 0.
Xem lời giải »
Câu 3:
Cho cấp số nhân lùi vô hạn (un) với \({u_n} = \frac{2}{{{3^n}}}.\) Tổng của cấp số nhân này bằng
A. 3.
B. 2.
C. 1.
D. 6.
Xem lời giải »
Câu 4:
Cho hàm số \(f\left( x \right) = \sqrt {x + 1} - \sqrt {x + 2} \). Mệnh đề đúng là
A. \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = - \infty \).
B. \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 0\).
C. \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = - 1\).
D. \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = - \frac{1}{2}\).
Xem lời giải »
Câu 5:
Lực hấp dẫn tác dụng lên một đơn vị khối lượng ở khoảng cách r tính từ tâm Trái Đất là
\(F\left( r \right) = \left\{ \begin{array}{l}\frac{{GMr}}{{{R^3}}}\,\,\,\,n\^e 'u\,\,\,r < R\\\frac{{GM}}{{{r^2}}}\,\,\,\,\,\,n\^e 'u\,\,\,r \ge R,\end{array} \right.\)
trong đó M và R lần lượt là khối lượng và bán kính của Trái Đất, G là hằng số hấp dẫn. Xét tính liên tục của hàm số F(r).
Xem lời giải »
Câu 6:
Tìm tập xác định của các hàm số sau và giải thích tại sao các hàm này liên tục trên các khoảng xác định của chúng.
a) \(f\left( x \right) = \frac{{\cos x}}{{{x^2} + 5x + 6}}\);
b) \(g\left( x \right) = \frac{{x - 2}}{{\sin \,x}}\).
Xem lời giải »
Câu 7:
Tìm các giá trị của a để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}x + 1\,\,\,\,\,n\^e 'u\,\,x \le a\\{x^2}\,\,\,\,\,\,\,\,\,\,\,n\^e 'u\,\,x > a\end{array} \right.\) liên tục trên ℝ.
Xem lời giải »