Không dùng máy tính, tính giá trị của các biểu thức: A = cos 75° cos 15°; B = sin 5pi /12cos 7pi /12


Câu hỏi:

Không dùng máy tính, tính giá trị của các biểu thức:

A = cos 75° cos 15°; B = \(\sin \frac{{5\pi }}{{12}}\cos \frac{{7\pi }}{{12}}\).

Trả lời:

Lời giải:

Ta có:

A = cos 75° cos 15° = \(\frac{1}{2}\)[cos(75° – 15°) + cos(75° + cos 15°)]

= \(\frac{1}{2}\)(cos 60° + cos 90°) = \(\frac{1}{2}\left( {\frac{1}{2} + 0} \right) = \frac{1}{4}\).

B = \(\sin \frac{{5\pi }}{{12}}\cos \frac{{7\pi }}{{12}}\) = \(\frac{1}{2}\left[ {\sin \left( {\frac{{5\pi }}{{12}} - \frac{{7\pi }}{{12}}} \right) + \sin \left( {\frac{{5\pi }}{{12}} + \frac{{7\pi }}{{12}}} \right)} \right]\)

\( = \frac{1}{2}\left[ {\sin \left( { - \frac{\pi }{6}} \right) + \sin \pi } \right] = \frac{1}{2}\left( { - \sin \frac{\pi }{6} + \sin \pi } \right)\)\( = \frac{1}{2}\left( { - \frac{1}{2} + 0} \right) = - \frac{1}{4}\).

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:

Câu 1:

Một thiết bị trễ kĩ thuật số lặp lại tín hiệu đầu vào bằng cách lặp lại tín hiệu đó trong một khoảng thời gian cố định sau khi nhận được tín hiệu. Nếu một thiết bị như vậy nhận được nốt thuần f1(t) = 5sin t và phát lại được nốt thuần f2(t) = 5cos t thì âm kết hợp là f(t) = f1(t) + f2(t), trong đó t là biến thời gian. Chứng tỏ rằng âm kết hợp viết được dưới dạng f(t) = ksin (t + φ), tức là âm kết hợp là một sóng âm hình sin. Hãy xác định biên độ âm k và pha ban đầu φ (– π ≤ φ ≤ π) của sóng âm.

Xem lời giải »


Câu 2:

Nhận biết công thức cộng

a) Cho \(a = \frac{\pi }{3}\) và \(b = \frac{\pi }{6}\), hãy chứng tỏ cos(a – b) = cos a cos b + sin a sin b.

b) Bằng cách viết a + b = a – (– b) và từ công thức ở HĐ1a, hãy tính cos(a + b).

c) Bằng cách viết sin(a – b) = \(\cos \left[ {\frac{\pi }{2} - \left( {a - b} \right)} \right] = \cos \left[ {\left( {\frac{\pi }{2} - a} \right) + b} \right]\) và sử dụng công thức vừa thiết lập ở HĐ1b, hãy tính sin(a – b).

Xem lời giải »


Câu 3:

Chứng minh rằng:

a) sin x – cos x = \(\sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right)\);

b) \(\tan \left( {\frac{\pi }{4} - x} \right) = \frac{{1 - \tan x}}{{1 + \tan x}}\,\,\,\)\(\left( {x \ne \frac{\pi }{2} + k\pi ,\,\,x \ne \frac{{3\pi }}{4} + k\pi ,k \in \mathbb{Z}} \right)\).

Xem lời giải »


Câu 4:

Giải bài toán trong tình huống mở đầu.

Xem lời giải »


Câu 5:

Trong các công thức biến đổi tích thành tổng ở Mục 3, đặt u = a – b, v = a + b và viết các công thức nhận được.

Xem lời giải »


Câu 6:

Không dùng máy tính, tính giá trị của biểu thức

B = \[\cos \frac{\pi }{9} + \cos \frac{{5\pi }}{9} + \cos \frac{{11\pi }}{9}\].

Xem lời giải »


Câu 7:

Khi nhấn một phím trên điện thoại cảm ứng, bàn phím sẽ tạo ra hai âm thuần, kết hợp với nhau để tạo ra âm thanh nhận dạng duy nhất phím. Hình 1.13 cho thấy tần số thấp f1 và tần số cao f2 liên quan đến mỗi phím. Nhấn một phím sẽ tạo ra sóng âm y = sin(2πf1t) + sin(2πf2t), ở đó t là biến thời gian (tính bằng giây).

a) Tìm hàm số mô hình hóa âm thanh được tạo ra khi nhấn phím 4.

b) Biến đổi công thức vừa tìm được ở câu a về dạng tích của một hàm số sin và một hàm số côsin.

Media VietJack

Xem lời giải »


Câu 8:

Sử dụng 15° = 45° – 30°, hãy tính các giá trị lượng giác của góc 15°.

Xem lời giải »