Một người lái xe từ địa điểm A đến địa điểm B trong thời gian 3 giờ. Biết quãng đường từ A đến B dài 180 km. Chứng tỏ rằng có ít nhất một thời điểm trên hành trình, xe chạy với vận tốc 60 km/


Câu hỏi:

Một người lái xe từ địa điểm A đến địa điểm B trong thời gian 3 giờ. Biết quãng đường từ A đến B dài 180 km. Chứng tỏ rằng có ít nhất một thời điểm trên hành trình, xe chạy với vận tốc 60 km/h.
Media VietJack

Trả lời:

Lời giải:

Sau bài học này, ta sẽ giải quyết được bài toán trên như sau:

Theo giả thiết, vận tốc trung bình của xe là \({v_a} = \frac{{180}}{3} = 60\) (km/h).

Gọi v(t) là hàm biểu thị vận tốc của xe tại thời điểm t.

Tại thời điểm xuất phát t0, vận tốc của xe v(t0) = 0 nên có một thời điểm t1 xe chạy với vận tốc v(t1) > va.

Xét hàm số f(t) = v(t) – va, rõ ràng f(t) là hàm số liên tục trên đoạn [t0; t1].

Hơn nữa, ta có f(t0) = – va < 0, f(t1) = v(t1) – va > 0 (do v(t1) > va), nên tồn tại thời điểm t* thuộc khoảng (t0; t1) sao cho f(t*) = 0. Khi đó ta có v(t*) – va = 0 hay v(t*) = va = 60.

Vậy có ít nhất một thời điểm trên hành trình, xe chạy với vận tốc 60 km/h.

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:

Câu 1:

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 1}}{{x - 1}}\,\,\,\,\,\,n\^e 'u\,\,\,\,\,x \ne 1\\2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,n\^e 'u\,\,\,\,\,x = 1.\end{array} \right.\)

Tìm giới hạn \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) và so sánh giá trị này với f(1).

Xem lời giải »


Câu 2:

Xét tính liên tục của hàm số \(f\left( x \right) = \left\{ \begin{array}{l} - x\,\,\,\,n\^e 'u\,\,x < 0\\0\,\,\,\,\,\,\,\,n\^e 'u\,\,x = 0\\{x^2}\,\,\,\,\,n\^e 'u\,\,x > 0\end{array} \right.\) tại điểm x0 = 0.

Xem lời giải »


Câu 3:

Cho hai hàm số \(f\left( x \right) = \left\{ \begin{array}{l}2x\,\,\,n\^e 'u\,\,0 \le x \le \frac{1}{2}\\1\,\,\,\,\,\,\,\,n\^e 'u\,\,\,\frac{1}{2} < x \le 1\end{array} \right.\) và \(g\left( x \right) = \left\{ \begin{array}{l}x\,\,\,n\^e 'u\,\,0 \le x \le \frac{1}{2}\\1\,\,\,\,n\^e 'u\,\,\frac{1}{2} < x \le 1\end{array} \right.\) với đồ thị tương ứng như Hình 5.7.

Media VietJack

Xét tính liên tục của các hàm số f(x) và g(x) tại điểm \(x = \frac{1}{2}\) và nhận xét về sự khác nhau giữa hai đồ thị.

Xem lời giải »


Câu 4:

Tìm các khoảng trên đó hàm số \(f\left( x \right) = \frac{{{x^2} + 1}}{{x + 2}}\) liên tục.

Xem lời giải »