Cho hai hàm số f( x ) = 2x, n^e 'u0 nhỏ hơn bằng x nhỏ hơn bằng 1/2; 1 n^e'u 1/2 < x nhỏ hơn bằng 1 và g( x ) = x; n^e'u; 0 nhỏ hơn bằng x nhỏ hơn bằng 1/2 1; n^e 'u, 1/2 < x nhỏ hơn bằng 1 v


Câu hỏi:

Cho hai hàm số \(f\left( x \right) = \left\{ \begin{array}{l}2x\,\,\,n\^e 'u\,\,0 \le x \le \frac{1}{2}\\1\,\,\,\,\,\,\,\,n\^e 'u\,\,\,\frac{1}{2} < x \le 1\end{array} \right.\) và \(g\left( x \right) = \left\{ \begin{array}{l}x\,\,\,n\^e 'u\,\,0 \le x \le \frac{1}{2}\\1\,\,\,\,n\^e 'u\,\,\frac{1}{2} < x \le 1\end{array} \right.\) với đồ thị tương ứng như Hình 5.7.

Media VietJack

Xét tính liên tục của các hàm số f(x) và g(x) tại điểm \(x = \frac{1}{2}\) và nhận xét về sự khác nhau giữa hai đồ thị.

Trả lời:

Lời giải:

+) Hàm số \(f\left( x \right) = \left\{ \begin{array}{l}2x\,\,\,n\^e 'u\,\,0 \le x \le \frac{1}{2}\\1\,\,\,\,\,\,\,\,n\^e 'u\,\,\,\frac{1}{2} < x \le 1\end{array} \right.\).

Hàm số f(x) xác định trên [0; 1], do đó \(x = \frac{1}{2}\) thuộc tập xác định của hàm số.

Ta có: \(\mathop {\lim }\limits_{x \to {{\frac{1}{2}}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {{\frac{1}{2}}^ + }} 1 = 1\); \(\mathop {\lim }\limits_{x \to {{\frac{1}{2}}^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {{\frac{1}{2}}^ - }} \left( {2x} \right) = 2 \cdot \frac{1}{2} = 1\).

Suy ra \(\mathop {\lim }\limits_{x \to {{\frac{1}{2}}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {{\frac{1}{2}}^ - }} f\left( x \right) = 1\), do đó \(\mathop {\lim }\limits_{x \to \frac{1}{2}} f\left( x \right) = 1\)

Mà \(f\left( {\frac{1}{2}} \right) = 2 \cdot \frac{1}{2} = 1\) nên \(\mathop {\lim }\limits_{x \to \frac{1}{2}} f\left( x \right) = f\left( {\frac{1}{2}} \right)\).

Vậy hàm số f(x) liên tục tại \(x = \frac{1}{2}\).

+) Hàm số \(g\left( x \right) = \left\{ \begin{array}{l}x\,\,\,n\^e 'u\,\,0 \le x \le \frac{1}{2}\\1\,\,\,\,n\^e 'u\,\,\frac{1}{2} < x \le 1\end{array} \right.\).

Hàm số g(x) xác định trên [0; 1], do đó \(x = \frac{1}{2}\) thuộc tập xác định của hàm số.

Ta có: \(\mathop {\lim }\limits_{x \to {{\frac{1}{2}}^ - }} g\left( x \right) = \mathop {\lim }\limits_{x \to {{\frac{1}{2}}^ - }} x = \frac{1}{2}\); \(\mathop {\lim }\limits_{x \to {{\frac{1}{2}}^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {{\frac{1}{2}}^ + }} 1 = 1\)

Suy ra \(\mathop {\lim }\limits_{x \to {{\frac{1}{2}}^ + }} g\left( x \right) \ne \mathop {\lim }\limits_{x \to {{\frac{1}{2}}^ - }} g\left( x \right)\).

Vậy không tồn tại giới hạn của hàm số g(x) tại \(x = \frac{1}{2}\), do đó hàm số g(x) gián đoạn tại \(x = \frac{1}{2}\).

+) Quan sát Hình 5.7 ta thấy, đồ thị của hàm số y = f(x) là đường liền trên (0; 1), còn đồ thị của hàm số y = g(x) trên (0; 1) là các đoạn rời nhau.

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:

Câu 1:

Một người lái xe từ địa điểm A đến địa điểm B trong thời gian 3 giờ. Biết quãng đường từ A đến B dài 180 km. Chứng tỏ rằng có ít nhất một thời điểm trên hành trình, xe chạy với vận tốc 60 km/h.
Media VietJack

Xem lời giải »


Câu 2:

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 1}}{{x - 1}}\,\,\,\,\,\,n\^e 'u\,\,\,\,\,x \ne 1\\2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,n\^e 'u\,\,\,\,\,x = 1.\end{array} \right.\)

Tìm giới hạn \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) và so sánh giá trị này với f(1).

Xem lời giải »


Câu 3:

Xét tính liên tục của hàm số \(f\left( x \right) = \left\{ \begin{array}{l} - x\,\,\,\,n\^e 'u\,\,x < 0\\0\,\,\,\,\,\,\,\,n\^e 'u\,\,x = 0\\{x^2}\,\,\,\,\,n\^e 'u\,\,x > 0\end{array} \right.\) tại điểm x0 = 0.

Xem lời giải »


Câu 4:

Tìm các khoảng trên đó hàm số \(f\left( x \right) = \frac{{{x^2} + 1}}{{x + 2}}\) liên tục.

Xem lời giải »


Câu 5:

Cho hai hàm số f(x) = x2 và g(x) = – x + 1.

a) Xét tính liên tục của hai hàm số trên tại x = 1.

b) Tính \(L = \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right]\) và so sánh L với f(1) + g(1).

Xem lời giải »


Câu 6:

Giải bài toán ở tình huống mở đầu.

Xem lời giải »


Câu 7:

Cho f(x) và g(x) là các hàm số liên tục tại x = 1. Biết f(1) = 2 và \(\mathop {\lim }\limits_{x \to 1} \left[ {2f\left( x \right) - g\left( x \right)} \right] = 3\). Tính g(1).

Xem lời giải »