Xét tính liên tục của hàm số f( x ) = - x, n^e'u, x < 0; 0, n^e'u, x = 0; x^2, n^e'u, x > 0 tại điểm x0 = 0.


Câu hỏi:

Xét tính liên tục của hàm số \(f\left( x \right) = \left\{ \begin{array}{l} - x\,\,\,\,n\^e 'u\,\,x < 0\\0\,\,\,\,\,\,\,\,n\^e 'u\,\,x = 0\\{x^2}\,\,\,\,\,n\^e 'u\,\,x > 0\end{array} \right.\) tại điểm x0 = 0.

Trả lời:

Lời giải:

Hàm số f(x) xác định trên ℝ, do đó x0 = 0 thuộc tập xác định của hàm số.

Ta có: \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} {x^2} = {0^2} = 0\); \(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - x} \right) = 0\).

Do đó, \[\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = 0\], suy ra \[\mathop {\lim }\limits_{x \to 0} f\left( x \right) = 0\].

Lại có f(0) = 0 nên \[\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right)\]. Vậy hàm số f(x) liên tục tại x0 = 0.

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:

Câu 1:

Một người lái xe từ địa điểm A đến địa điểm B trong thời gian 3 giờ. Biết quãng đường từ A đến B dài 180 km. Chứng tỏ rằng có ít nhất một thời điểm trên hành trình, xe chạy với vận tốc 60 km/h.
Media VietJack

Xem lời giải »


Câu 2:

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 1}}{{x - 1}}\,\,\,\,\,\,n\^e 'u\,\,\,\,\,x \ne 1\\2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,n\^e 'u\,\,\,\,\,x = 1.\end{array} \right.\)

Tìm giới hạn \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) và so sánh giá trị này với f(1).

Xem lời giải »


Câu 3:

Cho hai hàm số \(f\left( x \right) = \left\{ \begin{array}{l}2x\,\,\,n\^e 'u\,\,0 \le x \le \frac{1}{2}\\1\,\,\,\,\,\,\,\,n\^e 'u\,\,\,\frac{1}{2} < x \le 1\end{array} \right.\) và \(g\left( x \right) = \left\{ \begin{array}{l}x\,\,\,n\^e 'u\,\,0 \le x \le \frac{1}{2}\\1\,\,\,\,n\^e 'u\,\,\frac{1}{2} < x \le 1\end{array} \right.\) với đồ thị tương ứng như Hình 5.7.

Media VietJack

Xét tính liên tục của các hàm số f(x) và g(x) tại điểm \(x = \frac{1}{2}\) và nhận xét về sự khác nhau giữa hai đồ thị.

Xem lời giải »


Câu 4:

Tìm các khoảng trên đó hàm số \(f\left( x \right) = \frac{{{x^2} + 1}}{{x + 2}}\) liên tục.

Xem lời giải »


Câu 5:

Cho hai hàm số f(x) = x2 và g(x) = – x + 1.

a) Xét tính liên tục của hai hàm số trên tại x = 1.

b) Tính \(L = \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right]\) và so sánh L với f(1) + g(1).

Xem lời giải »


Câu 6:

Giải bài toán ở tình huống mở đầu.

Xem lời giải »