Giải Toán 11 trang 108 Tập 1 Kết nối tri thức
Haylamdo biên soạn và sưu tầm với Giải Toán 11 trang 108 Tập 1 trong Bài 15: Giới hạn của dãy số Toán lớp 11 Tập 1 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11 trang 108.
Giải Toán 11 trang 108 Tập 1 Kết nối tri thức
Luyện tập 4 trang 108 Toán 11 Tập 1: Tính tổng
Lời giải:
Đây là tổng của cấp số nhân lùi vô hạn với u1 = 2 và q = .
Do đó, .
Vận dụng 2 trang 108 Toán 11 Tập 1: (Giải thích nghịch lí Zeno)
Để đơn giản, ta giả sử Achilles chạy với vận tốc 100 km/h, vận tốc của rùa là 1 km/h và khoảng cách ban đầu là a = 100 (km).
a) Tính thời gian t1, t2, ..., tn, ... tương ứng để Achilles đi từ A1 đến A2, từ A2 đến A3, ... từ An đến An + 1, ...
b) Tính tổng thời gian cần thiết để Achilles chạy hết các quãng đường A1A2, A2A3, ..., AnAn + 1, ..., tức là thời gian cần thiết để Achilles đuổi kịp rùa.
c) Sai lầm trong lập luận của Zeno là ở đâu?
Lời giải:
Ta có: Achilles chạy với vận tốc 100 km/h, vận tốc của rùa là 1 km/h.
a) Để chạy hết quãng đường từ A1 đến A2 với A1A2 = a = 100 (km), Achilles phải mất thời gian (h). Với thời gian t1 này, rùa đã chạy được quãng đường A2A3 = 1 (km).
Để chạy hết quãng đường từ A2 đến A3 với A2A3 = 1 (km), Achilles phải mất thời gian (h). Với thời gian t2 này, rùa đã chạy được quãng đường A3A4 = (km).
Tiếp tục như vậy, để chạy hết quãng đường từ An đến An + 1 với AnAn + 1 = (km), Achilles phải mất thời gian (h). ...
b) Tổng thời gian cần thiết để Achilles chạy hết các quãng đường A1A2, A2A3, ..., AnAn + 1, ..., tức là thời gian cần thiết để Achilles đuổi kịp rùa là
(h).
Đó là tổng của một cấp số nhân lùi vô hạn với u1 = 1, công bội , nên ta có
(h).
Như vậy, Achilles đuổi kịp rùa sau giờ.
c) Nghịch lý Zeno chỉ đúng với điều kiện là tổng thời gian Achilles chạy hết các quãng đường để đuổi kịp rùa phải là vô hạn, còn nếu nó hữu hạn thì đó chính là khoảng thời gian mà anh bắt kịp được rùa.
HĐ5 trang 108 Toán 11 Tập 1: Nhận biết giới hạn vô cực
Một loại vi khuẩn được nuôi cấy với số lượng ban đầu là 50. Sau mỗi chu kì 4 giờ, số lượng của chúng sẽ tăng gấp đôi.
a) Dự đoán công thức tính số vi khuẩn un sau chu kì thứ n.
b) Sau bao lâu, số lượng vi khuẩn sẽ vượt con số 10 000?
Lời giải:
a) Ta có số lượng ban đầu của vi khuẩn là u0 = 50.
Sau chu kì thứ nhất, số lượng vi khuẩn là u1 = 2u0 = 2 . 50.
Sau chu kì thứ hai, số lượng vi khuẩn là u2 = 2u1 = 2 . 2 . 50 = 22 . 50.
Cứ tiếp tục như vậy, ta dự đoán được sau chu kì thứ n, số lượng vi khuẩn là un = 2n . 50.
b) Giả sử sau chu kì thứ k, số lượng vi khuẩn sẽ vượt con số 10 000.
Khi đó ta có uk = 2k . 50 > 10 000 ⇔ 2k > 200.
Lời giải bài tập Toán 11 Bài 15: Giới hạn của dãy số Kết nối tri thức hay khác: