Trong Vật lí, phương trình tổng quát của một vật dao động điều hòa cho bởi công thức x(t) = Acos(ωt + φ), trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t, A là


Câu hỏi:

Trong Vật lí, phương trình tổng quát của một vật dao động điều hòa cho bởi công thức x(t) = Acos(ωt + φ), trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t, A là biên độ dao động (A > 0) và φ [–π; π] là pha ban đầu của dao động.

Xét hai dao động điều hòa có phương trình:

x1(t)=2cos(π3t+π6) (cm),

x2(t)=2cos(π3tπ3) (cm).

Tìm dao động tổng hợp x(t) = x1(t) + x2(t) và sử dụng công thức biến đổi tổng thành tích để tìm biên độ và pha ban đầu của dao động tổng hợp này.

Trả lời:

Lời giải:

Dao động tổng hợp x(t) = x1(t) + x2(t)

Suy ra x(t) = 2cos(π3t+π6)+2cos(π3tπ3) (cm).

Ta có: 2cos(π3t+π6)+2cos(π3tπ3)

=2[cos(π3t+π6)+cos(π3tπ3)]

=2.2cos(π3t+π6)+(π3tπ3)2cos(π3t+π6)(π3tπ3)2

=4cos(π3tπ12)cosπ4=4cos(π3tπ12).22=22cos(π3tπ12).

Vậy dạo động tổng hợp có phương trình là x(t)=22cos(π3tπ12) với biên độ A=22 và pha ban đầu là φ=π12.

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:

Câu 1:

Một thiết bị trễ kĩ thuật số lặp lại tín hiệu đầu vào bằng cách lặp lại tín hiệu đó trong một khoảng thời gian cố định sau khi nhận được tín hiệu. Nếu một thiết bị như vậy nhận được nốt thuần f1(t) = 5sin t và phát lại được nốt thuần f2(t) = 5cos t thì âm kết hợp là f(t) = f1(t) + f2(t), trong đó t là biến thời gian. Chứng tỏ rằng âm kết hợp viết được dưới dạng f(t) = ksin (t + φ), tức là âm kết hợp là một sóng âm hình sin. Hãy xác định biên độ âm k và pha ban đầu φ (– π ≤ φ ≤ π) của sóng âm.

Xem lời giải »


Câu 2:

Nhận biết công thức cộng

a) Cho a=π3b=π6, hãy chứng tỏ cos(a – b) = cos a cos b + sin a sin b.

b) Bằng cách viết a + b = a – (– b) và từ công thức ở HĐ1a, hãy tính cos(a + b).

c) Bằng cách viết sin(a – b) = cos[π2(ab)]=cos[(π2a)+b] và sử dụng công thức vừa thiết lập ở HĐ1b, hãy tính sin(a – b).

Xem lời giải »


Câu 3:

Chứng minh rằng:

a) sin x – cos x = 2sin(xπ4);

b) tan(π4x)=1tanx1+tanx(xπ2+kπ,x3π4+kπ,kZ).

Xem lời giải »


Câu 4:

Giải bài toán trong tình huống mở đầu.

Xem lời giải »