Bài 4 trang 57 Toán 12 Tập 1 Chân trời sáng tạo


Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 2, SA vuông góc với đáy và SA bằng 1 (Hình 14). Thiết lập hệ tọa độ như hình vẽ, hãy vẽ các vectơ đơn vị trên các trục Ox, Oy, Oz và tìm tọa độ của các điểm A, B, C, S.

Giải Toán 12 Bài 2: Toạ độ của vectơ trong không gian - Chân trời sáng tạo

Bài 4 trang 57 Toán 12 Tập 1: Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 2, SA vuông góc với đáy và SA bằng 1 (Hình 14). Thiết lập hệ tọa độ như hình vẽ, hãy vẽ các vectơ đơn vị trên các trục Ox, Oy, Oz và tìm tọa độ của các điểm A, B, C, S.

Bài 4 trang 57 Toán 12 Tập 1 Chân trời sáng tạo

Lời giải:

Bài 4 trang 57 Toán 12 Tập 1 Chân trời sáng tạo

Các vectơ đơn vị trên các trục Ox, Oy, Oz lần lượt là i=OC,j=OE,k=OH với E là điểm thuộc tia Oy sao cho OE = 1 và H là điểm thuộc tia Oz sao cho OH = 1.

ABC đều và AO BC nên O là trung điểm của BC.

Mà BC = 2 nên OB = OC = 1 và OA=3.

OBi ngược hướng và OB = 1 nên OB=i. Suy ra B(−1; 0; 0).

OCi cùng hướng và OC = 1 nên OC=i. Suy ra C(1; 0; 0).

OAj cùng hướng và OA=3 nên OA=3j. Suy ra A0;3;0.

Theo quy tắc hình bình hành, ta có OS=OA+OH=3j+k. Suy ra S0;3;1.

Lời giải bài tập Toán 12 Bài 2: Toạ độ của vectơ trong không gian hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác: