Bài 8 trang 27 Toán 12 Tập 2 Chân trời sáng tạo


Sử dụng tích phân, tính thể tích của hình chóp tứ giác đều có cạnh đáy bằng a và chiều cao bằng h (Hình 20).

Giải Toán 12 Bài 3: Ứng dụng hình học của tích phân - Chân trời sáng tạo

Bài 8 trang 27 Toán 12 Tập 2: Sử dụng tích phân, tính thể tích của hình chóp tứ giác đều có cạnh đáy bằng a và chiều cao bằng h (Hình 20).

Bài 8 trang 27 Toán 12 Tập 2 Chân trời sáng tạo | Giải Toán 12

Lời giải:

Bài 8 trang 27 Toán 12 Tập 2 Chân trời sáng tạo | Giải Toán 12

Chọn trục Ox trùng với đường cao của hình chóp đều như hình vẽ, sao cho mặt đáy nằm trong mặt phẳng vuông góc với trục Ox tại x = 0.

Mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (0 ≤ x ≤ h) cắt hình chóp đều theo mặt cắt là hình vuông đồng dạng với đáy của hình chóp theo tỉ số xh.

Do đó Sxa2=xh2Sx=xh2a2=a2h2x2.

Do đó thể tích khối chóp tứ giác đều là:

V=0ha2h2x2dx=a2h2.x330h=13a2h

Lời giải bài tập Toán 12 Bài 3: Ứng dụng hình học của tích phân hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác: