Vận dụng 1 trang 24 Toán 12 Tập 2 Chân trời sáng tạo
Mặt cắt của một cửa hầm có dạng là hình phẳng giới hạn bởi một parabol và đường thẳng nằm ngang như Hình 7. Tính diện tích của cửa hầm.
Giải Toán 12 Bài 3: Ứng dụng hình học của tích phân - Chân trời sáng tạo
Vận dụng 1 trang 24 Toán 12 Tập 2: Mặt cắt của một cửa hầm có dạng là hình phẳng giới hạn bởi một parabol và đường thẳng nằm ngang như Hình 7. Tính diện tích của cửa hầm.
Lời giải:
Chon hệ tọa độ Oxy như hình vẽ.
Giả sử (P): y = ax2 + bx + c (a ≠ 0).
Vì (P) đi qua các điểm (0; 0), (6; 0), (3; 6) nên ta có:
.
Vậy (P): .
Bài toán trở thành tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số , trục hoành và hai đường thẳng x = 0, x = 6.
Diện tích cần tính là:
m2.
Vậy diện tích của cửa hầm là 24 m2.
Lời giải bài tập Toán 12 Bài 3: Ứng dụng hình học của tích phân hay, chi tiết khác:
Bài 2 trang 27 Toán 12 Tập 2: Tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số y = x3 – x, trục hoành và hai đường thẳng x = 0, x = 2 ....
Bài 3 trang 27 Toán 12 Tập 2: Tính diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số , y = – x và hai đường thẳng x = 1, x = 4 ....
Bài 4 trang 27 Toán 12 Tập 2: Tính diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số y = x3 + 1, y = 2 và hai đường thẳng x = −1, x = 2 ....
Bài 5 trang 27 Toán 12 Tập 2: Khi cắt một vật thể hình chiếc nêm bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (−2 ≤ x ≤ 2) ....
Bài 6 trang 27 Toán 12 Tập 2: Cho D là hình phẳng giới hạn bởi đồ thị hàm số (x ≤ 4), trục tung và trục hoành (Hình 18) ....
Bài 7 trang 27 Toán 12 Tập 2: Trong mặt phẳng tọa độ Oxy, cho hình thang OABC có A(0; 1), B(2; 2) và C(2; 0) (Hình 19) ....
Bài 8 trang 27 Toán 12 Tập 2: Sử dụng tích phân, tính thể tích của hình chóp tứ giác đều có cạnh đáy bằng a và chiều cao bằng h (Hình 20) ....