Thực hành 3 trang 36 Toán 12 Tập 2 Chân trời sáng tạo


Cho hai mặt phẳng (α), (β) có phương trình tổng quát là (α): 2x + 2y – 3z – 4 = 0 và (β): x + 4z – 12 = 0.

Giải Toán 12 Bài 1: Phương trình mặt phẳng - Chân trời sáng tạo

Thực hành 3 trang 36 Toán 12 Tập 2: Cho hai mặt phẳng (α), (β) có phương trình tổng quát là (α): 2x + 2y – 3z – 4 = 0 và (β): x + 4z – 12 = 0.

a) Tìm một vectơ pháp tuyến của mỗi mặt phẳng (α), (β).

b) Tìm điểm thuộc mặt phẳng (α) trong số các điểm: M(1; 0; 1), N(1; 1; 0).

Lời giải:

a) Mặt phẳng (α) có một vectơ pháp tuyến là nα=2;2;3

Mặt phẳng (β) có một vectơ pháp tuyến là nβ=1;0;4

b) Thay tọa độ điểm M vào phương trình (α) ta được: 2.1 + 2.0 – 3.1 – 4 = −5 ≠ 0.

Vậy M không thuộc mặt phẳng (α).

Thay tọa độ điểm N vào phương trình (α) ta được: 2.1 + 2.1 – 3.0 – 4 = 0.

Vậy N thuộc mặt phẳng (α).

Lời giải bài tập Toán 12 Bài 1: Phương trình mặt phẳng hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác: