Bài 10 trang 111 Toán 7 Tập 2 - Kết nối tri thức
Cho tam giác ABC vuông tại A. Gọi D là điểm thuộc cạnh BC sao cho BD = BA và H là trung điểm của AD. Tia BH cắt AC tại E. Tia DE cắt tia BA tại M. Chứng minh rằng:
Giải Toán 7 Bài tập ôn tập cuối năm
Bài 10 trang 111 Toán 7 Tập 2: Cho tam giác ABC vuông tại A. Gọi D là điểm thuộc cạnh BC sao cho BD = BA và H là trung điểm của AD. Tia BH cắt AC tại E. Tia DE cắt tia BA tại M. Chứng minh rằng:
a) ∆ABH = ∆DBH.
b) Tam giác AED cân.
c) EM > ED.
d) Giả sử = 60o. Chứng minh rằng tam giác BCM là tam giác đều và CE = 2EA.
Lời giải:
a) Do H là trung điểm của AD nên AH = DH.
Xét ∆ABH và ∆DBH có:
AB = DB (theo giả thiết).
BH chung.
AH = DH (chứng minh trên).
Suy ra ∆ABH = ∆DBH (c - c - c).
b) Do ∆ABH = ∆DBH (c - c - c) nên (2 góc tương ứng).
Xét ∆ABE và ∆DBE có:
AB = DB (theo giả thiết).
(chứng minh trên).
BE chung.
Suy ra ∆ABE = ∆DBE (c - g - c).
Do đó AE = DE (2 cạnh tương ứng).
có AE = DE nên ∆AED cân tại E.
c) Xét ∆AME vuông tại A có EM là cạnh huyền nên EM là cạnh lớn nhất trong tam giác.
Do đó EM > EA.
Mà EA = ED nên EM > ED.
d) Do ∆AME = ∆DBE (c - g - c) nên .
Do đó ED ⊥ BC hay MD ⊥ BC.
Xét ∆BCM có CA ⊥ BM, MD ⊥ BC.
Mà CA cắt MD tại E nên E là trực tâm của .
Khi đó BE ⊥ MC.
Ta có nên BE là tia phân giác của .
∆BCM có BE vừa là đường cao, vừa là tia phân giác nên ∆BCM cân tại B.
Khi đó nếu = 60o thì cân tại B có = 60o nên là tam giác đều.
Khi đó E vừa là trực tâm, vừa là trọng tâm của ∆BCM.
Do đó CE = 2EA.
Lời giải bài tập Toán 7 Bài tập ôn tập cuối năm hay, chi tiết khác:
Bài 1 trang 110 Toán 7 Tập 2: Tính giá trị của các biểu thức sau: a) + (22 . 3)2 . + 20200 + ; ....
Bài 2 trang 110 Toán 7 Tập 2: Tính một cách hợp lí. a) ; ....