Cho tam giác ABC cân tại A và M là trung điểm của đoạn thẳng BC. Chứng minh AM vuông góc với BC và AM là tia phân giác của góc BAC
Câu hỏi:
Cho tam giác ABC cân tại A và M là trung điểm của đoạn thẳng BC. Chứng minh AM vuông góc với BC và AM là tia phân giác của góc BAC.
Trả lời:
Do tam giác ABC cân tại A nên AB = AC.
Do M là trung điểm của BC nên MB = MC.
Xét hai tam giác ABM và ACM có:
AB = AC (chứng minh trên).
AM chung.
MB = MC (chứng minh trên).
Do đó (c – c – c).
Khi đó (2 góc tương ứng).
Mà (2 góc kề bù) nên
Do đó
Do nên (2 góc tương ứng).
Do đó AM là tia phân giác của
Vậy AM vuông góc với BC và AM là tia phân giác của góc BAC.