X

Giải Toán lớp 7 Kết nối tri thức

Sử dụng thước thẳng và compa để vẽ đường trung trực của đoạn thẳng AB như sau: - Vẽ đoạn thẳng AB; - Lấy A làm tâm, vẽ cung tròn


Câu hỏi:

Sử dụng thước thẳng và compa để vẽ đường trung trực của đoạn thẳng AB như sau:

- Vẽ đoạn thẳng AB;

- Lấy A làm tâm, vẽ cung tròn (bán kính lớn hơn AB2), sau đó lấy B làm tâm, vẽ cung tròn có cùng bán kính, sao cho hai cung tròn này cắt nhau tại hai điểm M và N;

- Dùng thước thẳng vẽ đường thẳng MN. Khi đó MN là đường trung trực của đoạn thẳng AB (H.4.68).

Sử dụng thước thẳng và compa để vẽ đường trung trực của đoạn thẳng AB như sau:  - Vẽ đoạn thẳng AB;  - Lấy A làm tâm, vẽ cung tròn (ảnh 1)

Trả lời:

Thực hiện vẽ theo các bước như sau:

Bước 1. Vẽ đoạn thẳng AB (giả sử AB = 4 cm).

Sử dụng thước thẳng và compa để vẽ đường trung trực của đoạn thẳng AB như sau:  - Vẽ đoạn thẳng AB;  - Lấy A làm tâm, vẽ cung tròn (ảnh 2)

Bước 2. Khi đó AB2=2cm.

Từ A vẽ cung tròn tâm A bán kính 3 cm (tùy ý).

Từ B vẽ cung tròn tâm B bán kính 3 cm.

Hai cung tròn này cắt nhau tại M và N.

Sử dụng thước thẳng và compa để vẽ đường trung trực của đoạn thẳng AB như sau:  - Vẽ đoạn thẳng AB;  - Lấy A làm tâm, vẽ cung tròn (ảnh 3)

Bước 3. Dùng thước thẳng vẽ đường thẳng MN. Khi đó MN là đường trung trực của đoạn thẳng AB.

Sử dụng thước thẳng và compa để vẽ đường trung trực của đoạn thẳng AB như sau:  - Vẽ đoạn thẳng AB;  - Lấy A làm tâm, vẽ cung tròn (ảnh 4)

Xem thêm lời giải bài tập Toán 7 Kết nối tri thức hay, chi tiết:

Câu 1:

Kiến trúc sư vẽ bản thiết kế ngôi nhà hình tam giác theo tỉ lệ 1 : 100. Biết rằng ngôi nhà cao 5 m, bề ngang mặt sàn rộng 4 m và hai mái nghiêng như nhau. Theo em, bản thiết kế làm thế nào để xác định được chính xác điểm C thể hiện đỉnh ngôi nhà?

Kiến trúc sư vẽ bản thiết kế ngôi nhà hình tam giác theo tỉ lệ 1 : 100. Biết rằng ngôi nhà cao 5 m, bề ngang mặt sàn rộng (ảnh 1)

Xem lời giải »


Câu 2:

Hãy nêu tên tất cả các tam giác cân trong Hình 4.59. Với mỗi tam giác cân đó, hãy nêu tên cạnh bên, cạnh đáy, góc ở đỉnh, góc ở đáy của chúng.

Hãy nêu tên tất cả các tam giác cân trong Hình 4.59. Với mỗi tam giác cân đó, hãy nêu tên cạnh bên, cạnh đáy, góc ở đỉnh (ảnh 1)

Xem lời giải »


Câu 3:

Quan sát tam giác ABC cân tại A như Hình 4.60. Lấy D là trung điểm của đoạn thẳng BC.

a) Chứng minh rằng ΔABD=ΔACD theo trường hợp cạnh – cạnh – cạnh.

b) Hai góc B và C của tam giác ABC có bằng nhau không?

Quan sát tam giác ABC cân tại A như Hình 4.60. Lấy D là trung điểm của đoạn thẳng BC (ảnh 1)

Xem lời giải »


Câu 4:

Cho tam giác MNP có M^=N^. Vẽ tia phân giác PK của góc MNP (KMN).

Chứng minh rằng:

a) MKP^=NKP^;                                  b) ΔMPK=ΔNPK;

c) Tam giác MNP có cân tại P không?

Cho tam giác MNP có góc M = góc N. Vẽ tia phân giác PK của tam giác MNP (ảnh 1)

Xem lời giải »


Câu 5:

Cho tam giác ABC cân tại A và các điểm E, F lần lượt nằm trên các cạnh AC, AB sao cho BE vuông góc với AC, CF vuông góc với AB (H.4.69). Chứng minh rằng BE = CF.

Cho tam giác ABC cân tại A và các điểm E, F lần lượt nằm trên các cạnh AC, AB sao cho BE vuông góc với AC, CF (ảnh 1)

Xem lời giải »


Câu 6:

Cho tam giác ABC cân tại A và M là trung điểm của đoạn thẳng BC. Chứng minh AM vuông góc với BC và AM là tia phân giác của góc BAC.

Xem lời giải »


Câu 7:

Cho tam giác ABC và M là trung điểm của đoạn thẳng BC.

a) Giả sử AM vuông góc với BC. Chứng minh rằng tam giác ABC cân tại A.

b) Giả sử AM là tia phân giác của góc BAC. Chứng minh rằng tam giác ABC cân tại A.

Xem lời giải »


Câu 8:

Tam giác vuông có hai cạnh bằng nhau được gọi là tam giác vuông cân.

Hãy giải thích các khẳng định sau:

a) Tam giác vuông cân thì cân tại đỉnh góc vuông;

b) Tam giác vuông cân có hai góc nhọn bằng 45o;

c) Tam giác vuông có một góc nhọn bằng 45o là tam giác vuông cân.

Xem lời giải »