X

Toán 8 Kết nối tri thức

Chứng minh đẳng thức sau: (2x + y)(2x^2 + xy – y^2) = (2x – y)(2x^2 + 3xy + y^2).


Câu hỏi:

Chứng minh đẳng thức sau: (2x + y)(2x2 + xy – y2) = (2x – y)(2x2 + 3xy + y2).

Trả lời:

Ta có:

• (2x + y)(2x2 + xy – y2)

= 2x . 2x2 + 2x . xy – 2x . y2 + y . 2x2 + y . xy – y . y2

= 4x3 + 2x2y – 2xy2 + 2x2y + xy2 – y3

= 4x3 + (2x2y + 2x2y) + (xy2 – 2xy2) – y3

= 4x3 + 4x2y – xy2 – y3.

• (2x – y)(2x2 + 3xy + y2)

= 2x . 2x2 + 2x . 3xy + 2x . y2 – y . 2x2 – y . 3xy – y . y2

= 4x3 + 6x2y + 2xy2 – 2x2y – 3xy2 – y3

= 4x3 + (6x2y – 2x2y) + (2xy2 – 3xy2) – y3

= 4x3 + 4x2y – xy2 – y3.

Do đó (2x + y)(2x2 + xy – y2) = (2x – y)(2x2 + 3xy + y2) = 4x3 + 4x2y – xy2 – y3.

Vậy (2x + y)(2x2 + xy – y2) = (2x – y)(2x2 + 3xy + y2).

Xem thêm lời giải bài tập Toán 8 Kết nối tri thức hay, chi tiết:

Câu 1:

Giả sử độ dài hai cạnh của một hình chữ nhật được biểu thị bởi M = x + 3y + 2 và N = x + y. Khi đó, diện tích của hình chữ nhật được biểu thị bởi

MN = (x + 3y + 2)(x + y).

Trong tình huống này, ta phải nhân hai đa thức M và N. Phép nhân đó được thực hiện như thế nào và kết quả có phải là một đa thức hay không?

Xem lời giải »


Câu 2:

Nhân hai đơn thức:

a) 3x2 và 2x3;

Xem lời giải »


Câu 3:

b) –xy và 4z3;

Xem lời giải »


Câu 4:

c) 6xy3 và –0,5x2.

Xem lời giải »