Bài 4 trang 79 Toán 9 Tập 2 Cánh diều
Cho tứ giác nội tiếp ABCD có hai tia CD và BA cắt nhau tại I. Chứng minh:
Giải Toán 9 Bài tập cuối chương 8 - Cánh diều
Bài 4 trang 79 Toán 9 Tập 2: Cho tứ giác nội tiếp ABCD có hai tia CD và BA cắt nhau tại I. Chứng minh:
a)
b) IA . IB = ID . IC.
Lời giải:
a) Vì tứ giác ABDC nội tiếp đường tròn (O) nên các góc đối diện có tổng số đo bằng 180°. Do đó:
Mà (hai góc kề bù) nên
b) Xét ∆IAD và ∆ICB, có:
(do và là góc chung
Do đó ∆IAD ᔕ ∆ICB (g.g)
Suy ra (tỉ số đồng dạng) nên IA . IB = IC . ID.
Lời giải bài tập Toán 9 Bài tập cuối chương 8 hay, chi tiết khác:
Bài 1 trang 79 Toán 9 Tập 2: Cho tứ giác ABCD nội tiếp đường tròn có Số đo góc A là:....
Bài 2 trang 79 Toán 9 Tập 2: Cho đường tròn (I) nội tiếp tam giác ABC và lần lượt tiếp xúc với các cạnh BC, CA, AB tại M, N, P. Chứng minh ....
Bài 3 trang 79 Toán 9 Tập 2: Cho tam giác nhọn ABC nội tiếp đường tròn (O). Các đường cao AK, BM cắt nhau tại trực tâm H của tam giác ABC....
Bài 5 trang 79 Toán 9 Tập 2: Cho tứ giác ABCD và các điểm M, N lần lượt thuộc các đoạn thẳng AB và CD sao cho các tứ giác AMND, BMNC là các tứ giác nội tiếp. ....
Bài 6 trang 79 Toán 9 Tập 2: Khung thép của một phần sân khấu có dạng đường tròn bán kính 15 m. Mắt của một người thợ ở vị trí A nhìn hai đèn ở các vị trí B, C (A, B, C ....