X

Toán 9 Cánh diều

Sử dụng tính chất cotα = tan(90° – α), ta có thể tính được côtang của một góc nhọn.


Câu hỏi:

Sử dụng tính chất cotα = tan(90° – α), ta có thể tính được côtang của một góc nhọn. Chẳng hạn ta tính cot56° như sau:

Sử dụng tính chất cotα = tan(90° – α), ta có thể tính được côtang của một góc nhọn. (ảnh 1)

Trả lời:

HS thực hiện hoạt động theo hướng dẫn của GV và SGK.

Xem thêm lời giải bài tập Toán 9 Cánh diều hay, chi tiết:

Câu 1:

Cho góc nhọn xBy^=α. Xét tam giác ABC vuông tại A, tam giác A’BC’ vuông tại A’ với A, A’ thuộc tia Bx và C, C’ thuộc tia By (Hình 1). Do ∆ABC ∆A’BC’ nên ACBC=A'C'BC'.

Cho góc nhọn góc xBy = alpha. Xét tam giác ABC vuông tại A, tam giác A’BC’ vuông (ảnh 1)

Như vậy, tỉ số giữa cạnh đối AC của góc nhọn α và cạnh huyền BC trong tam giác vuông ABC không phụ thuộc vào việc chọn tam giác vuông đó.

Tỉ số ACBC có mối liên hệ như thế nào với độ lớn góc α?

Xem lời giải »


Câu 2:

Cho tam giác ABC vuông tại A có B^=α (Hình 2).

Cho tam giác ABC vuông tại A có góc B = alpha (Hình 2).  a) Cạnh góc vuông nào là cạnh đối của góc B? (ảnh 1)

a) Cạnh góc vuông nào là cạnh đối của góc B?

Xem lời giải »


Câu 3:

b) Cạnh góc vuông nào là cạnh kề của góc B?

Xem lời giải »


Câu 4:

c) Cạnh nào là cạnh huyền?

Xem lời giải »


Câu 5:

Sử dụng máy tính cầm tay để tính (gần đúng) các giá trị lượng giác sau: sin71°; cos48°; tan59°; cot23°.

Xem lời giải »


Câu 6:

Cho tam giác ABC vuông tại A có AC = 4 cm, BC = 6 cm. Tính các tỉ số lượng giác của góc B.

Xem lời giải »


Câu 7:

Cho tam giác ABC vuông tại A có AB = 2 cm, AC = 3 cm. Tính các tỉ số lượng giác của góc C.

Xem lời giải »


Câu 8:

Cho tam giác MNP có MN = 5 cm, MP = 12 cm, NP = 13 cm. Chứng minh tam giác MNP vuông tại M. Từ đó, tính các tỉ số lượng giác của góc N.

Xem lời giải »